Measurement of sin2 β with the BaBar Detector

Shahram Rahatlou University of California, San Diego

For the BaBar Collaboration

Flavor Physics and CP Violation Conference Philadelphia, 16 May 2002

CP Violation in Standard Model

Standard Model with 3 generations accommodates CP violation through a phase in CKM matrix

$$V = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Unitarity of the CKM Matrix

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Measure sin2
$$\beta$$
 in
 $B^{0} \rightarrow J/\psi K_{S,L}, K^{*0}$
 $B^{0} \rightarrow \chi_{c} K_{S}$
 $B^{0} \rightarrow \eta_{c} K_{S}$
 $B^{0} \rightarrow D^{*}D^{(*)}$
 $B^{0} \rightarrow \Phi K_{s}$

CP Violation due to Mixing and Decay

$$f(\overline{B}_{phys}^{0} \rightarrow f_{CP}, t) = \frac{\Gamma}{4} e^{-\Gamma |\Delta t|} [1 - C_{f} \cos(\Delta m_{d} t) + S_{f} \sin(\Delta m_{d} t)]$$

$$\lambda_{f_{CP}} = \frac{q}{p} \cdot \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}}$$

$$C_{f} = \frac{1 - |\lambda_{f_{CP}}|^{2}}{1 + |\lambda_{f_{CP}}|^{2}}$$
Probe of direct CP violation: $|\lambda_{f_{CP}}| \neq 1$

$$S_{f} = \frac{2 \operatorname{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^{2}}$$
Sensitive to phase of λ even without direct CP Violation

Golden Decay Mode: $B^0 \rightarrow J/\psi K_S^0$

- Theoretically clean way to measure the phase of λ (sin2 β)
- Clean experimental signature
- Large branching fraction compared to other CP eigenstates

Time-dependent CP asymmetry

$$A_{CP}(t) = -\eta_{CP} \sin 2\beta \sin(\Delta m t)$$

⇒
$$\eta_{CP} = -1$$

 $\checkmark B^0 \rightarrow J/\psi, \psi(2s), \chi_{c1} K^0_s$
⇒ $\eta_{CP} = +1$
 $\checkmark B^0 \rightarrow J/\psi K^0_L$

PEP-II Asymmetric B-Factory at SLAC

B-Factory Performance

PEP-II top luminosity: $4.60 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ (design 3.0 x 10³³)

Top recorded Lumi/week: 1.8 fb⁻¹ Top recorded Lumi/24h: 303 pb⁻¹ Top recorded Lumi/8h: 105 pb⁻¹

BABAR logging efficiency: > 96%

PEP-II delivered: 89.8 fb^{-1} BABAR recorded: 85.4 fb^{-1} (includes 8.8 fb^{-1} off peak)161 million B's available !!

The BaBar Detector

SVT:97% efficiency, 15 μ m z hit resolution (inner layers, perp. tracks)SVT+DCH: $\sigma(p_T)/p_T = 0.13 \% \times p_T + 0.45 \%$ DIRC:K- π separation 4.2 σ @ 3.0 GeV/c \rightarrow 2.5 σ @ 4.0 GeV/cEMC: $\sigma_E/E = 2.3 \% \cdot E^{-1/4} \oplus 1.9 \%$

Shahram Rahatlou

Event Topology

Fully Reconstructed B sample

Vertex and Δt Reconstruction

- Average Δz resolution is 180 μ m (<| Δz |> ~ $\beta \gamma C \tau$ = 260 μ m)
- Δt resolution function measured from data

B Flavor Tagging Methods

Hierarchical Tagging Categories

For electrons, muons and Kaons use the charge correlation

Mixing Likelihood Fit

Unbinned maximum likelihood fit to flavor-tagged B⁰ sample

All Δt parameters extracted from data

$$f_{\text{Unmix}}(\Delta t) = \begin{cases} \frac{e^{-/\Delta t / / \tau_{B_d}}}{4\tau_{B_d}} \times (1 \pm (1 - 2w) \cos(\Delta m_d \Delta t)) \end{cases} \otimes R$$

Fit Parameters

$$\Delta m_d$$

Mistag fractions for B⁰ and B⁰ tags
Signal resolution function
Empirical description of background Δt
B lifetime fixed (PDG 2000)

$$f(\Delta t) = \begin{cases} \frac{e^{-/\Delta t / / \tau_{B_d}}}{4\tau_{B_d}} \times (1 \pm (1 - 2w) \cos(\Delta m_d \Delta t)) \end{cases} \otimes R$$

44 total free parameters

B⁰B⁰ Mixing Fit Result

Yields for modes with Ks

1999-2001 data

$62 \times 10^{6} \text{ BB pairs}$ 56.4 fb⁻¹ on peak

Energy-substituted mass

$$m_{\rm ES} = \sqrt{(E_{\rm beam}^{\rm cm})^2 - (p_{\rm B}^{\rm cm})^2}$$

$J/\Psi K_L$ and $J/\Psi K^{*0}$ Yields

 $\begin{array}{c} \mathbf{\hat{s}} \\ \mathbf{\hat{s}}$

Full angular analysis

 J/ψ background composition and CP content from inclusive J/ψ Monte Carlo Fake J/ψ background from data sidebands

Mode	N_{tagged}	Purity
(cc)K _s	995	94%
$J/\Psi K_L$	742	57%
J/Ψ K*0	113	83%
All CP	1850	79%

Δt Spectrum of CP Events

sin2β Likelihood Fit

Combined unbinned maximum likelihood fit to Δt spectra of flavor and CP sample

- ✓ All Δt parameters extracted
- from data ✓ Correct estimate of the error and correlations

Fit Parameters sin2β cos2β

Mistag fractions for B⁰ and B⁰ tags Signal resolution function Empirical description of background Δt B lifetime fixed (PDG 2000) Mixing Frequency fixed (PDG 2000)

tagged CP samples From $J/\psi K^{*0}$ sample tagged flavor sample $\tau_{\rm R} = 1.548 \ {\rm ps}$ $\Delta m_{d} = 0.472 \text{ ps}^{-1}$

35 total free parameters

Null Test in B Flavor Sample

B flavor sample as control sample for CP analysis

Sample	``sin2β″
$B^0 \rightarrow D^{(*)} \pi^+, \rho^+, a_1^+$	-0.01 ± 0.03
$B^0 \rightarrow J/\Psi K^{*0}(K^+\pi^-)$	0.00 ± 0.09
$B^{-} \rightarrow D^{(*)0} \pi^{-}$	-0.01 ± 0.03
$B^{-} \rightarrow J/\psi, \chi_{c} K^{-}$	-0.05 ± 0.08

No asymmetry where none is expected!

CP Asymmetry in η_{CP} =-1 and η_{CP} =+1 Samples

$sin 2\beta$ Results

Sources of Systematic Error

•	 Description of background events CP content of background components Event-by-event signal probability 	0.019
•	 ∆t resolution and detector effects Silicon detector misalignment ∆t resolution model 	0.015
•	Fixed lifetime and oscillation frequency	0.014
•	Monte Carlo statistics	0.014
	Composition and content of J/ ψ K _L background	0.013

Total systematic error: 0.04

• In the Standard Model $|\lambda| = 1$

Probe New Physics beyond the Standard Model
 No constraint on |λ|

$$A_{CP}(t) = S_{f} \sin(\Delta m_{d} t) - C_{f} \cos(\Delta m_{d} t)$$
$$S_{f_{CP}} = \frac{2 \operatorname{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^{2}} = 0.76 \pm 0.10 \qquad |\lambda_{f_{CP}}| = 0.93 \pm 0.06 \pm 0.03$$

The Unitarity Triangle

One solution for β is consistent with measurements of sides of Unitarity Triangle

Method as in Höcker et al, Eur.Phys.J.C21:225-259,2001 (also other recent global CKM matrix analyses)

New $sin 2\beta$ World Average

- Enlarge $b \rightarrow c\bar{cs}$ sample
 - $B^0 \rightarrow \eta_c K_s$
 - Hadronic decays of J/ψ
- New tests of the Standard Model
 - Cabibbo suppressed modes in $b \rightarrow ccd$: $B \rightarrow D^*D^{(*)}$
 - Same weak phase but unknown contribution from penguins
 - Not pure CP eigenstate
 - Pure penguin $b \rightarrow s\bar{ss}$ modes: $B^0 \rightarrow \phi K_s$
 - Experimentally clean
 - Small branching fraction: O(10⁻⁵)
 - Cabibbo suppressed mode: $B^0 \rightarrow J/\psi \pi^0$
 - Experimentally more challenging
 - Provides valuable information on penguin contribution

New Charmonium mode

FPCP, 16 May 2002

27

CP Asymmetry in D*D* and D*D

- Mixture of CP-odd and CP-even final states
- Fit only for coefficients

$$A_{CP}(\Delta t) = S_{D^*D^*} \sin(\Delta m \Delta t) + C_{D^*D^*} \cos(\Delta m \Delta t)$$

 $S_{D^*D^*} = -0.05 \pm 0.45 \pm 0.07$ $C_{D^*D^*} = 0.12 \pm 0.30 \pm 0.03$

 Different time distribution for D*+D⁻ and D*-D+

$$S_{D^{*}+D^{-}} = -0.43 \pm 1.41 \pm 0.20$$
$$C_{D^{*}+D^{-}} = 0.53 \pm 0.74 \pm 0.13$$
$$S_{D^{*}-D^{+}} = 0.38 \pm 0.88 \pm 0.05$$
$$C_{D^{*}-D^{+}} = 0.30 \pm 0.50 \pm 0.08$$

See Yury Kolomensky's talk on Saturday for more details

• Updated measurement of $sin2\beta$ with BaBar

■ Going towards a precision measurement with 500 fb⁻¹

- Systematic error to shrink with enlarged data sample
- Comparable statistical and systematic error of \leq 0.03