Sin2 $\phi_2(=\alpha)$ from Belle

Eunil Won (Korea Univ) for the Belle Collaboration

Outline

sin2 ϕ_2 and B $\rightarrow \pi\pi$ decay Event Selection CP fit results Summary

Measuring CKM Angles with B decays

From time dependent decay asymmetry,

$$\frac{\Gamma(\overline{B}_{phys}^{0}(t) \to f_{CP}) - \Gamma(B_{phys}^{0}(t) \to f_{CP})}{\Gamma(\overline{B}_{phys}^{0}(t) \to f_{CP}) + \Gamma(B_{phys}^{0}(t) \to f_{CP})}$$
$$= S_{f_{CP}} \sin(\Delta m_{d} \Delta t) + A_{f_{CP}} \cos(\Delta m \Delta t)$$

where
$$A_{f_{CP}} = \frac{|\lambda|^2 - 1}{|\lambda|^2 + 1}$$
 and $S_{f_{CP}} = \frac{2 \operatorname{Im} \lambda}{|\lambda|^2 + 1}$ $\lambda = q / p\overline{A} / A$
 $|B_L \ge p | B^0 \ge +q | \overline{B}^0 \ge$
Mode A_{fCP} S_{fCP}
 $B \rightarrow J/\psi K_s \quad 0 \qquad \sin 2\phi_1$
 $B \rightarrow \pi^+\pi^- \qquad \operatorname{nonzero} \qquad \sim \sin 2(\phi_2 + \theta)$

 S_{fCP} is identical to $sin2\phi_2$ if there is no penguin amplitudes

(θ :relative phase btw penguin contributions in $\overline{A}_{\pi\pi}$ and $A_{\pi\pi}$)

FPCP 2002

Possibility of significant contributions from gluonic $b \rightarrow d$ penguin amplitudes $\Rightarrow S_{\pi\pi} \ddagger \sin 2\phi_2$ $A_{\pi\pi} \ddagger 0$ (indicating direct CP violation) $\Gamma(K\pi) \sim 3\Gamma(\pi\pi) \rightarrow \text{penguins} \sim V_{ub}$ trees

Isospin analysis is required for a clean determination of the angle ϕ_2 \rightarrow For this, one needs to know Br($\overline{B}^0 \rightarrow \pi^0 \pi^0$) and Br ($B^0 \rightarrow \pi^0 \pi^0$) separately (experimentally difficult...)

Hep-ph/ 0105308, Gronau et al: $S_{\pi\pi} \sim \sin^2(\phi_2 + \theta)$ and put an upper bound on $|2\theta|$ ("Gronau bound") with knowing $B^{00} = \frac{1}{2}(|A^{00}|^2 + |A^{00}|^2)$ only

Measurement of CPV asymmetries in $B \rightarrow \pi^+ \pi^-$

The method is very similar to that of $\sin 2\phi_1$ One needs to introduce direct CP violation term (A_{$\pi\pi$}) in the CP fitting procedure

> q = +1 B tag - 1 B tag

The decay rate distribution $R_a(\Delta t)$ is given by

$$R_{q}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B}}}{4\tau_{B}} \Big[1 + q \left\{ A_{\pi\pi} \cos(\Delta m \Delta t) + S_{\pi\pi} \sin(\Delta m \Delta t) \right\} \Big]$$

FPCP 2002

Event Selection (42 fb⁻¹)

Oppositely charged pairs of well measured track

remove electron candidates and assume all are π or K require π identification (likelihood ratio using ACC and dE/dx)

 $(\varepsilon_{\pi} = 0.900 \pm 0.005, f_{\pi \rightarrow k} = 0.064 \pm 0.002)$

B candidate selection

Energy difference ($-300 < \Delta E < 500 \text{ MeV}$)

Beam energy constrained mass ($m_{bc} > 5.2 \text{ GeV}$)

(includes side band at this stage)

Continuum background suppression

$$\Delta E \equiv E_{\pi} + E_{\pi} - E_{CM} / 2$$
$$m_{bc} = \sqrt{(E_{CM} / 2)^2 - (\vec{p}_{\pi} + \vec{p}_{\pi})^2}$$

Likelihood ratio using event shape variables (Modified Fox-Wolfram variables and B flight direction)

Rare B decay backgrounds

shifted in ΔE distribution

 \rightarrow subtraction considered in the yield extraction

B meson Reconstruction

Continuum Suppression

FPCP 2002

Continuum Suppression

Likelihood Ratio R

$B^0 \rightarrow \pi^+\pi^-$ example

Signal Yield for $B \rightarrow \pi^+ \pi^-$

High-p (primary), low-p (secondary) leptons

Strangeness (b \rightarrow c \rightarrow s)

Fast π , slow π

Identical flavor tagging method as used in sin2_{∲1} measurement two stage (track and event level) multi dimensional likelihood Total effective tagging efficiency : 29.6%

Vertex Reconstruction

Vertex reconstruction and resolution functions are same as that used for the $sin2\phi_1$ analysis of LP01

MC study shows little difference btw $\pi\pi$ and J/ ψ samples

Both signal and background resolution functions are in same functional form:

$$R(\Delta t_B - \Delta t') = (1 - f_{tail}) \frac{1}{\sqrt{2\pi\sigma_{\Delta t}}} e^{-\frac{(\Delta t_B - \Delta t' - \mu_{\Delta t})^2}{2\sigma^2}} + f_{tail} \frac{1}{\sqrt{2\pi\sigma_{tail}}} e^{-\frac{(\Delta t_B - \Delta t' - \mu_{tail})^2}{2(\sigma_{tail}^{\Delta t})^2}}$$

Sum of two Gaussians modeling main and tail part respectively

CP fit for $S_{\pi\pi}$ and $A_{\pi\pi}$

PDF for $\pi\pi$ signal events

$$P_{\pi\pi}(\Delta t, q, w_l) = \frac{e^{|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \{1 + q(1 - 2w_l) \times (A_{\pi\pi} \cos(\Delta m_d \Delta t) + S_{\pi\pi} \sin(\Delta m_d \Delta t))\}$$

for $K\pi$ events

$$P_{K\pi}(\Delta t, q, w_l) = \frac{e^{|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \{1 + q(1 - 2w_l) \times A_{K\pi} \cos(\Delta m_d \Delta t)\}$$

for continuum background

$$P_{qq}(\Delta t) = \frac{1}{2} \left\{ f_{\tau} \frac{e^{|\Delta t|/\tau_{bkg}}}{2\tau_{bkg}} + (1 - f_{\tau})\delta(\Delta t) \right\} \qquad \begin{array}{l} f_{\tau} = 0.011 \pm 0.004 \\ \tau_{bkg} = 2.68 \pm 0.95 \pm 0.72 \text{ ps} \end{array}$$

Construct event by event (unbinned) likelihood as $\mathsf{PDF}\otimes\mathsf{Resolution}$ function and maximize product of them

$$\begin{split} L_{i} &= \int_{-\infty}^{\infty} d\Delta t' \{ (f_{\pi\pi} P_{\pi\pi}(\Delta t', q) + f_{K\pi} P_{K\pi}(\Delta t', q)) \bullet R_{sig}(\Delta t_{i} - \Delta t') \\ &+ f_{q\bar{q}} P_{q\bar{q}}(\Delta t') \bullet R_{q\bar{q}}(\Delta t_{i} - \Delta t') \} \end{split}$$

FPCP 2002

Raw asymmetries

CP fit results : $S_{\pi\pi}$ and $A_{\pi\pi}$

Belle's (S_{$\pi\pi$}, A_{$\pi\pi$}) is 1.2 σ away from the physical boundary Belle and Babar disagree by > 2 σ

What (if any) can be wrong?

(The components of the present analysis are the same as those used to measure $sin2\phi_1$, τ_B , Δm_d , etc all in reasonable agreement with BaBar and PDG averages)

Possibilities

Are the backgrounds asymmetric?

- check with $K\pi$ and qq-sideband samples
- check with $D\pi$, $D\rho$ samples

Is vertexing wrong for $B \rightarrow h^+h^-$ decays?

- Measure Δm_d , τ_B for $B \rightarrow \pi\pi$ and $K\pi$ decays
- Do the likelihood values and errors make sense?
- Ensemble tests

Statistical fluctuations?

$K\pi$ samples

 $N(K^{+}\pi^{-}) = 289.5 \pm 21.5$ events (5.2 ± 13.3 $\pi^{+}\pi^{-}$ feed-across)

Asymmetry for $K^+\pi^-$

PDG $\tau_{B}(ps)$: 1.548 ± 0.032 ps

Other control samples

Other non-CP eigenstate self-tagged modes

No asymmetry is expected. \Rightarrow We find no asymmetries.

PDG $\tau_{\text{B}}\text{:}$ 1.548 \pm 0.032 ps

	D⁻π+	D*-π+	D*-ρ+
τ _B (ps)	1.64±0.05	1.61±0.05	1.68±0.06
S	0.09±0.09	0.13±0.09	-0.04±0.10
А	0.01 ± 0.06	-0.03±0.06	-0.10±0.07

Asymmetry for sideband data

Consistent with no asymmetry

$B \rightarrow K\pi, \pi\pi$ lifetime validations

Lifetime measurements

 $1.49 \pm 0.21 \text{ ps}$

 $1.73 \pm 0.15 \text{ ps}$

PDG: 1.548 ± 0.032 ps

Δm_d from B $\rightarrow K\pi$

Possibilities revisited

Are the backgrounds asymmetric?

- K π , qq-sideband and D π/ρ samples show null asymmetries

Is vertexing wrong for $B \rightarrow h^+h^-$ **decays?** -Lifetime for $B \rightarrow \pi\pi$ and $K\pi$ samples are OK $-\Delta m_d$ for $B \rightarrow K\pi$ is OK

Do the likelihood values and errors make sense?

- Ensemble tests show no anomaly

Statistical fluctuations?

- Most likely at this moment

Systematic error estimation

Item	δS(-)	δS(+)	δΑ(-)	δA(+)
Background frac.	-0.088	+0.077	-0.040	+0.057
Wrong tag	-0.071	+0.047	-0.052	+0.058
vertexing	-0.049	+0.059	-0.030	+0.017
physics	-0.039	+0.040	-0.012	+0.017
Fit bias	-0.024	+0.110	-0.051	+0.030
Background shape	-0.015	+0.015	-0.003	+0.004
Resolution function	-0.012	+0.012	-0.008	+0.008
Total	-0.133	+0.160	-0.090	+0.090

At present, statistical error is 2~3 times larger than systematic

What's going on with $B \rightarrow \pi^0 \pi^0$?

Data sample: 29 fb⁻¹

2.2 σ effect at this moment Br(B $\rightarrow \pi^{0}\pi^{0}$) < 0.56x10⁻⁵ at 90% CL

FPCP 2002

Summary

CP violating asymmetry parameters were measured in $B \rightarrow \pi^+ \pi^-$ decay using 42 fb⁻¹ of data

$$S_{\pi\pi} = -1.21 + 0.38 + 0.16 \\ -0.27 - 0.13 \\ (stat.) (syst.)$$
$$A_{\pi\pi} = +0.94 + 0.25 \\ -0.31 \pm 0.09 \\ -0.31$$

Both are 2.9σ away from zero

Br($B \rightarrow \pi^{o} \pi^{o}$) could be within reach in near future

Backup Slides for Questions

Signal Yield for $B \rightarrow \pi^+ \pi^-$

|∆E| < 0.067 GeV

Peak in m_{bc} includes both $\pi\pi$ and $K\pi$ components

Fit result in m_{bc} 101.6 ± 13.1 (consistent with ΔE fit result: 101.9 ± 18.6)

Beam energy constrained mass

Ensemble tests: Pulls and Errors

