Measurements of CP asymmetries and branching fractions in $B^0 \rightarrow \pi^+\pi^-, K^+\pi^-, K^+K^-$

> Paul Dauncey Imperial College, University of London For the BaBar Collaboration

CP violation in the Standard Model

CP violation arises due to complex CKM matrix; e.g. Wolfenstein parametrisation:

16 May 2002

Paul Dauncey - BaBar

Direct CP violation

CP violation requires interference between at least two amplitudes with different phases, e.g. $B^0 \rightarrow K^+\pi^-$

CP violation gives a non-zero asymmetry: $A_{K\pi} = \Gamma(\overline{B}{}^0 \to K^-\pi^+) - \Gamma(B^0 \to K^+\pi^-) / \Gamma(\overline{B}{}^0 \to K^-\pi^+) + \Gamma(B^0 \to K^+\pi^-)$ In principle leads to γ measurement

Indirect CP violation

Mixing gives two paths if final state accessible from B⁰ and \overline{B}^0 , e.g. $B^0 \rightarrow J/\Psi K_s^0$

CP violation gives a time-dependent asymmetry:

Amplitude = $Im(e^{i2\beta}) = sin2\beta$

Leads to β measurement: see talk by S. Rahatlou

16 May 2002

Paul Dauncey - BaBar

Experimental reality

Analysis is different from $B^0 \rightarrow J/\Psi K_s^0$...

- **No clean** $\pi\pi$ or $K\pi$ sample; need to determine particle type
 - Particle identification needed
 - Analyse both modes simultaneously; also include KK
- No clean signal sample; high backgrounds from udsc
 - **D** Branching fractions are ~ $10^{-6} 10^{-5}$
 - Need to use kinematics and event shapes to distinguish modes
 - Use unbinned maximum likelihood fit to extract signals
- ... but some elements are identical:
- Need to "tag" the other B to find if B^0 or \overline{B}^0
 - Use lepton charge, K charge or neural networks
 - □ Inefficiency and impurity ("dilution")
- Cannot measure time directly
 - $\Box \quad \text{Time difference } \Delta t \text{ between two B decays}$

The BaBar detector

Pep-II delivers boosted $e^+e^- \rightarrow Y(4s) \rightarrow B\overline{B}$, on and off the Y(4s) Integrated luminosity: 55.6 fb⁻¹ on peak, 60.2 ± 0.7 million $B\overline{B}$ events

Particle identification with the DIRC

Detector of Internally Reflected Cherenkov light (DIRC): essential for this analysis to distinguish K from π

Cherenkov light transmitted down quartz bars by internal reflection

Reconstruct Cherenkov angle $\cos\theta_{\rm C} = 1/n\beta$ from rings seen in PMTs

Analysis overview

Analysis is done in two stages:

- Direct CP; extract branching fractions for $\pi\pi$, K π and KK and also the K π decay CP asymmetry A_{K π}
 - □ Maximum likelihood fit to kinematic/event shape quantities
 - Requires no tag or vertex measurement
 - Separate fit reduces systematic error
 - Indirect CP; extract $\pi\pi$ CP asymmetry sin2 α_{eff}
 - **\Box** Fix branching fractions and $A_{K\pi}$ to above results
 - **Q** Requires tag to determine if B^0 or \overline{B}^0
 - Requires vertex information to find time dependence

All results are preliminary

5.3

Kinematic variables - m_{ES}

 $m_{FS} = \sqrt{(E_{beam}^2 - p_B^2)}$

B candidate mass using beam "energy substitution"

in CM

Kinematic variables - ΔE

B candidate energy difference from beam energy

 $\Delta E = E_B - E_{beam} \quad \text{ in CM}$ Select | ΔE | < 0.15 GeV

- Depends on masses of B decay products; π mass assumed
- Kπ and KK shifted to non-zero average; ~ 45 MeV per K
- Resolution dominated by tracking
- $\sigma(\Delta E) \sim 26 \text{ MeV}$
- Signal shape parametrised from MC; background from fit

Particle identification - θ_c

DIRC θ_c mean and resolution parametrised from data using $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+) \pi^+$ decays

Paul Dauncey - BaBar

Background suppression - Fisher

F - optimized linear combination of energy flow into nine cones around candidate (CLEO Fisher discriminant). Signal shape from MC, background from fit

Cut on angle between B candidate and sphericity of the other tracks in the event: $|\cos \theta_s| < 0.8$

16 May 2002

Branching fraction maximum likelihood fit Five input variables per event; assume independent (uncorrelated) PDFs for each:

F Discriminate signal from background ΔE θ_{C}^{+} Discriminate different signal modes θ_{C}^{-}

Eight fit parameters: four for signal, four for background

 $N(\pi^{+}\pi^{-})$ $N(K^{+}\pi^{-})$ $N(\pi^{+}K^{-})$ $N(K^{+}K^{-})$

m_{ES}

Fit directly for N(K π) and A_{K π}: N(K⁺ π^-) = N(K π) (1–A_{K π})/2 N(π^+ K⁻) = N(K π) (1+A_{K π})/2

Branching fraction results

Fit results are:

	Yield	Branching Fraction	K π Asymmetry, A _{Kπ}
Mode	(events)	(10^{-6})	
$B^0 \rightarrow p^+ p^-$	124_{-15-9}^{+16+7}	$5.4 \pm 0.7 \pm 0.4$	
$B^0 \rightarrow K^+ p^-$	$403 \pm 24 \pm 15$	$17.8 \pm 1.1 \pm 0.8$	$-0.05 \pm 0.06 \pm 0.01$
$B^0 \rightarrow K^+ K^-$	<15.6 (90% C.L.)	<1.1 (90% C.L.)	

No significant direct CP violation seen in $B^0 \rightarrow K^+\pi^-$

90% C.L.
$$-0.14 < A_{K\pi} < 0.05$$

Main systematics:

Branching fractions – uncertainty in shape of $\theta_{\rm C}$ PDF

Asymmetry - possible charge bias in track and $\theta_{\rm C}$ reconstruction

Branching fraction projections

Likelihood projections: remove one variable from fit and cut on fit probabilities to give enhanced signal samples:

Measuring indirect CP violation

- Extend the branching fraction analysis to extract indirect CP information:
 - Needs extra information on:
 - □ Time of decay (vertexing); reconstruct "other" B decay point and find time difference of B decays
 - □ Flavour of the decaying B⁰ (tagging); use tracks whose charge carries flavour information
 - \Box Use identical techniques to sin2 β analysis
 - Fit for CP violation asymmetries while holding branching fractions and Kπ asymmetry to previously determined values
 - □ Vary these parameters within determined errors for systematics; small effect for asymmetries

Vertexing and Δt

Asymmetric beam energies mean Y(4s) is boosted:

 Δt is time difference between the two decays:

- Resolution is dominated by the "other" B, $\sigma(\Delta t) \sim 0.8$ ps
- Independent of signal type
- Can use same resolution model as $\sin 2\beta$ analysis
- Exploit mixing to measure signal performance (dilutions) and efficiencies
- Signal resolution determined from large sample of fully reconstructed B's, background shape determined from fit

Signal yield time dependences

The signal modes depend differently on Δt :

- $\pi\pi$ general form allows for both tree and penguin: rates
- $\Box \quad f(\Delta t) \sim 1 \pm S_{\pi\pi} \sin(\Delta m_{d} \Delta t) \mp C_{\pi\pi} \cos(\Delta m_{d} \Delta t) \quad \text{for } B^{0}(B^{0}) \text{ tag}$
- $S_{\pi\pi} = 2 \text{Im}(\lambda) / (1 + |\lambda|^2) \text{ and } C_{\pi\pi} = (1 |\lambda|^2) / (1 + |\lambda|^2)$
- $\Box \quad \text{For pure tree, } \lambda = e^{i2\alpha} \text{ so } S_{\pi\pi} = \sin 2\alpha \text{ and } C_{\pi\pi} = 0$
- □ With some penguin contribution, $C_{\pi\pi} \neq 0$ and $S_{\pi\pi} = \sqrt{(1 C_{\pi\pi}^2) \sin 2\alpha_{eff}}$
- $K\pi$ time dependence due to B⁰ mixing: rates
- $\Box \quad f(\Delta t) \sim 1 \pm \cos(\Delta m_{d} \Delta t) \quad \text{for unmixed (mixed) } B^{0}$
- **KK** general form similar to $\pi\pi$ in principle
 - Model with simple exponential
 - Actual PDFs used in fit:
 - Diluted due to mistage
 - $\Box \quad Convolved with \Delta t resolution functions$

Flavour tagging

Use same flavour tagging as $\sin 2\beta$ measurement:

retained in the fit to determine background shapes

Time-dependent fit results

Fit results in:

$$\begin{split} S_{\pi\pi} &= -0.01 \pm 0.37 \pm 0.07 \\ C_{\pi\pi} &= -0.02 \pm 0.29 \pm 0.07 \end{split}$$

No significant indirect CP violation seen in ${\rm B}^{0} \to \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$

■ 90% C.L.
$$-0.66 < S_{\pi\pi} < 0.62$$

■ 90% C.L.
$$-0.54 < C_{\pi\pi} < 0.48$$

Main systematic:

Uncertainty in shape of
$$\theta_{\rm C}$$
 PDF

Enhanced $\mathbf{B} \to \pi\pi$ sample: Δt distributions and asymmetry between mixed and unmixed events. Fitt

16 May 2002

Paul Dauncey - BaBar

Time-dependent fit cross checks

Fit checked using "toy" studies of simulated experiments

- All parameters unbiased
- All errors consistent with expectations

Likelihood value (goodness of fit) consistent with expectations
Fit holds B lifetime and mixing constant: cross check by fitting

- $\tau_{\rm B} = 1.66 \pm 0.09 \text{ ps}$ (c.f. PDG value $1.54 \pm 0.02 \text{ ps}$)
- $\Delta m_{d} = 0.517 \pm 0.062 \text{ ps}^{-1} \text{ (c.f. PDG value } 0.479 \pm 0.012 \text{ ps}^{-1}\text{)}$

Summary of BaBar preliminary results

Branching fractions:

$$B(B^{0} \to \pi^{+}\pi^{-}) = (5.4 \pm 0.7 \pm 0.4) \times 10^{-6}$$

$$B(B^{0} \to K^{+}\pi^{-}) = (17.8 \pm 1.1 \pm 0.8) \times 10^{-6}$$

$$B(B^{0} \to K^{+}K^{-}) = <1.1 \times 10^{-6} (90\% \text{ C.L.})$$

CP asymmetries; no evidence for CP violation:

$$\begin{split} S_{\pi\pi} &= -0.01 \pm 0.37 \pm 0.07 \quad \text{or} \quad 90\% \text{ C.L.} \quad -0.66 < S_{\pi\pi} < 0.62 \\ C_{\pi\pi} &= -0.02 \pm 0.29 \pm 0.07 \quad \text{or} \quad 90\% \text{ C.L.} \quad -0.54 < C_{\pi\pi} < 0.48 \\ A_{K\pi} &= -0.05 \pm 0.06 \pm 0.01 \quad \text{or} \quad 90\% \text{ C.L.} \quad -0.14 < A_{K\pi} < 0.05 \end{split}$$