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Measurements of CP asymmetries 
and branching fractions in

B0 → π+π− , K+π−, K+K−
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CP violation arises due to complex CKM matrix; e.g. Wolfenstein 
parametrisation:
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α is third internal angle

CP violation in the Standard Model

CKM unitarity; 
represent as 
triangle in ρ,η
plane

Vtd ∝ e-iβ
Vub ∝ e-iγ
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Direct CP violation
CP violation requires interference between at least two amplitudes 

with different phases, e.g. B0 → K+π−

B0 K+π−

T

P

CP violation gives a non-zero asymmetry:
AKπ = Γ(B0 → K−π+)−Γ(B0 → K+π−)/Γ(B0 → K−π+)+Γ(B0 → K+π−)
In principle leads to γ measurement

Relative 
weak phase

eiγ

– –



16 May 2002 Paul Dauncey - BaBar 4

Indirect CP violation
Mixing gives two paths if final state accessible from B0 and B0, 

e.g. B0 → J/Ψ K0
S

B0 J/Ψ K0
S

CP violation gives a time-dependent asymmetry:

Amplitude = Im(ei2β) = sin2β
Leads to β measurement: see talk by S. Rahatlou

B0

T

TM –
–

–

Relative 
weak phase

ei2β
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CP violation in B0 → π+π−

B0 → π+π− has both effects

B0 π+π−

If both tree and penguin significant: parametrise as sin2αeff

Interpretation also depends on strong amplitudes

B0

T
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No relative 
weak phase

Relative 
weak phase

ei2α
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Experimental reality
Analysis is different from B0 → J/Ψ K0

S…
n No clean ππ or Kπ sample; need to determine particle type
q Particle identification needed
q Analyse both modes simultaneously; also include KK

n No clean signal sample; high backgrounds from udsc
q Branching fractions are ~ 10–6 – 10–5

q Need to use kinematics and event shapes to distinguish modes
q Use unbinned maximum likelihood fit to extract signals

…but some elements are identical:
n Need to “tag” the other B to find if B0 or B0

q Use lepton charge, K charge or neural networks
q Inefficiency and impurity (“dilution”)

n Cannot measure time directly
q Time difference ∆t between two B decays

–
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The BaBar detector

DIRC (PID)
144 quartz bars

11000 PMs

1.5T solenoid EMC
6580 CsI(Tl) crystals

Drift Chamber
40 stereo layers

Instrumented Flux Return
iron / RPCs (muon / neutral hadrons)

Silicon Vertex Tracker
5 layers, double sided 

strips

e+ (3.1GeV)

e− (9 GeV)

Pep-II delivers boosted e+e− → Y(4s) → BB, on and off the Y(4s)
Integrated luminosity: 55.6 fb-1 on peak, 60.2 ± 0.7 million BB events

–
–
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Particle identification with the DIRC
Detector of Internally Reflected Cherenkov light (DIRC): essential 

for this analysis to distinguish K from π
Reconstruct Cherenkov

angle cosθC = 1/nβ
from rings seen in
PMTs

Cherenkov light transmitted down 
quartz bars by internal reflection
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Analysis is done in two stages:
n Direct CP; extract branching fractions for ππ, Kπ and KK and 

also the Kπ decay CP asymmetry AKπ

q Maximum likelihood fit to kinematic/event shape quantities
q Requires no tag or vertex measurement
q Separate fit reduces systematic error

n Indirect CP; extract ππ CP asymmetry sin2αeff

q Fix branching fractions and AKπ to above results
q Requires tag to determine if B0 or B0

q Requires vertex information to find time dependence

All results are preliminary

Analysis overview

–
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B candidate mass using beam “energy substitution”
mES = √(Ebeam

2 – pB
2) in CM

Select 5.2 < mES < 5.3 GeV/c2

Kinematic variables - mES

Signal Monte Carlo;
Gaussian

Background; ARGUS 
threshold function

n Depends on reconstructed 
momentum of B 
candidate, pB  ~ 325 MeV

n Same for all signal modes
n Resolution dominated by 

beam energy uncertainty
n σ(mES) ~ 2.6 MeV/c2

n Signal shape from MC, 
background from fit
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Kinematic variables - ∆E

Background; 
quadratic function

Kπ
ππKK

B candidate energy difference from beam energy
∆E = EB – Ebeam in CM

Select | ∆E | < 0.15 GeV

n Depends on masses of B decay 
products; π mass assumed 

n Kπ and KK shifted to non-zero 
average; ~ 45 MeV per K

n Resolution dominated by 
tracking

n σ(∆E) ~ 26 MeV
n Signal shape parametrised from 

MC; background from fit

Signals: 
Gaussian
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DIRC θc mean and resolution parametrised from data using 
D*+→ D0π+ → (K–π+)π+ decays

Particle identification - θc

σ(θC) = 2.2 mrad 9σ

2.5σ

K/π Separation

Momentum range of decays
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Background suppression - Fisher

Signal 
Monte 
Carlo

Background

Cut on angle between B candidate 
and sphericity of the other tracks in 
the event: |cos θs| < 0.8

F - optimized linear combination of 
energy flow into nine cones around 
candidate (CLEO Fisher discriminant). 
Signal shape from MC, background 
from fit

Cut

Signal Monte Carlo

Background
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Five input variables per event; assume independent 
(uncorrelated) PDFs for each:

n mES

n F               Discriminate signal from background
n ∆E
n θC

+                             Discriminate different signal modes
n θC

–

Eight fit parameters: four for signal, four for background
n N(π+π−)
n N(K+π−)
n N(π+K−)
n N(K+ K−)

Branching fraction maximum likelihood fit

Fit directly for N(Kπ) and AKπ: 

N(K+π−) = N(Kπ) (1–AKπ)/2

N(π+K−) = N(Kπ) (1+AKπ)/2
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Branching fraction results

Branching Fraction
(10-6)

Kπ Asymmetry, AKπYield
(events)Mode

−+→ pKB0

−+→ ppB0

−+→ KKB0
01.006.005.0 ±±−

4.07.04.5 ±±

8.01.18.17 ±±

C.L.) (90%  1.1<

716
915124 ++

−−

1524403 ±±
C.L.) (90%  6.15<

No significant direct CP violation seen in B0 → K+π−

n 90% C.L.   –0.14 < AKπ < 0.05

Main systematics:

n Branching fractions – uncertainty in shape of θC PDF

n Asymmetry - possible charge bias in track and θC reconstruction

Fit results are:
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Branching fraction projections

Fit sample: 17585
candidates, ε ~ 38%

B0→Kπ

B0→ππ

Likelihood projections: remove one variable from fit and cut on fit 
probabilities to give enhanced signal samples:

Background 
and crossfeed
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Measuring indirect CP violation
Extend the branching fraction analysis to extract indirect CP 

information:
n Needs extra information on:
q Time of decay (vertexing); reconstruct “other” B decay point and find 

time difference of B decays
q Flavour of the decaying B0 (tagging); use tracks whose charge carries

flavour information
q Use identical techniques to sin2β analysis

n Fit for CP violation asymmetries while holding branching 
fractions and Kπ asymmetry to previously determined values
q Vary these parameters within determined errors for systematics; small 

effect for asymmetries
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Asymmetric beam energies mean Y(4s) is boosted:
Vertexing and ∆t

ϒ(4s)
βγ = 0.55 π+

∆z

∆t ≅ ∆z/γβc

π-
Fully reconstructed B→ππBest vertex for “other” B

∆t  is time difference between the two decays:
n Resolution is dominated by the “other” B, σ(∆t) ~ 0.8 ps
n Independent of signal type
n Can use same resolution model as sin2β analysis
n Exploit mixing to measure signal performance (dilutions) and 

efficiencies
n Signal resolution determined from large sample of fully 

reconstructed B’s, background shape determined from fit



16 May 2002 Paul Dauncey - BaBar 19

The signal modes depend differently on ∆t:
n ππ general form allows for both tree and penguin: rates
q f(∆t) ~ 1 ± Sππ sin(∆md∆t) Cππ cos(∆md∆t) for B0(B0) tag
q Sππ = 2Im(λ)/(1+|λ|2) and Cππ = (1−|λ|2)/(1+|λ|2)
q For pure tree, λ = ei2α so Sππ = sin2α and Cππ = 0
q With some penguin contribution, Cππ ≠ 0 and Sππ = √(1−Cππ

2) sin2αeff

n Kπ time dependence due to B0 mixing: rates
q f(∆t) ~ 1 ± cos(∆md∆t) for unmixed (mixed) B0

n KK general form similar to ππ in principle
q Model with simple exponential

n Actual PDFs used in fit:
q Diluted due to mistags
q Convolved with ∆t resolution functions

Signal yield time dependences

± –
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Flavour tagging

Gev/c2mES

Fit sample: 9220
tagged candidates

Separate 
into tag 
categories

Lepton;
εeff ~ 8%

Neural Net 1;
εeff ~ 2%

Kaon;

εeff ~ 14%

Neural Net 2;
εeff ~ 1%

Use same flavour tagging as sin2β measurement:

Untagged events (~ 33%) 
retained in the fit to determine 
background shapes
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Fit results in:
Sππ = –0.01 ± 0.37 ± 0.07        
Cππ = –0.02 ± 0.29 ± 0.07        

No significant indirect CP violation seen in B0 → π+π−

n 90% C.L.   –0.66 < Sππ < 0.62
n 90% C.L.   –0.54 < Cππ < 0.48
Main systematic:
n Uncertainty in shape of θC PDF

Time-dependent fit results

Enhanced B → ππ sample:
∆t distributions and 
asymmetry between mixed 
and unmixed events.

Fit result

Fitted background
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Fit checked using “toy” studies of simulated experiments
n All parameters unbiased
n All errors consistent with expectations
n Likelihood value (goodness of fit) consistent with expectations
Fit holds B lifetime and mixing constant: cross check by fitting
n τB = 1.66 ± 0.09 ps (c.f. PDG value  1.54 ± 0.02 ps)
n ∆md = 0.517 ± 0.062 ps–1 (c.f. PDG value  0.479 ± 0.012 ps–1)

Time-dependent fit cross checks

Enhanced B → Kπ sample: 
asymmetry between unmixed 
and mixed events.



16 May 2002 Paul Dauncey - BaBar 23

Summary of BaBar preliminary results

Branching fractions:
B(B0 → π+π−) = (5.4 ± 0.7 ± 0.4) × 10–6

B(B0 → K+π−) = (17.8 ± 1.1 ± 0.8) × 10–6

B(B0 → K+K−) = < 1.1 × 10–6 (90% C.L.)

CP asymmetries; no evidence for CP violation:
Sππ = –0.01 ± 0.37 ± 0.07   or    90% C.L.   –0.66 < Sππ < 0.62
Cππ = –0.02 ± 0.29 ± 0.07   or  90% C.L.   –0.54 < Cππ < 0.48
AKπ = –0.05 ± 0.06 ± 0.01  or    90% C.L. –0.14 < AKπ < 0.05


