The Soft-Collinear Effective Field Theory

Iain W. Stewart University of Washington

Flavor Physics and CP Violation University of Pennsylvania May 16-18, 2002

lain Stewart – p.1

Outline

- Motivation
- Soft-Collinear Effective Theory
- Power counting, Symmetries, and Factorization
- Factorization for $B \to X_s \gamma$ and $B \to D\pi$
- Sudakov Logarithms, Reparameterization Invariance
- Large N_c versus Large E Factorization
- Conclusions

Based on work with:

- C. Bauer, D. Pirjol,
- S. Fleming, I. Rothstein
- T. Mehen, A. Manohar, B. Grinstein

Motivation

To understand hadronic uncertainties we need to separate short ($p \sim Q$) and long ($p \sim \Lambda_{QCD}$) distance contributions [this is Factorization]

Effective Field Theory: Useful for separating physics at different momentum scales

HQET, $m_B \gg \Lambda_{\text{QCD}}$

- systematic expansion in Λ_{QCD}/m_Q
- new symmetries for $m_Q \to \infty$
- universal non-perturbative parameters

What about processes with energetic particles, $Q \gg \Lambda_{QCD}$?

$$B \to \pi e \nu, B \to \rho e \nu, B \to K^* \gamma, B \to K e^+ e^-, B \to D\pi, B \to \pi\pi, B \to K\pi, B \to X_u e \nu, B \to X_s \gamma, \dots DIS, Drell Yan, \gamma^* \gamma \to \pi^0, \gamma^* \pi \to \pi, \dots$$

Motivation

To understand hadronic uncertainties we need to separate short ($p \sim Q$) and long ($p \sim \Lambda_{QCD}$) distance contributions [this is Factorization]

Effective Field Theory: Useful for separating physics at different momentum scales

HQET, $m_B \gg \Lambda_{\text{QCD}}$

- systematic expansion in $\Lambda_{\rm QCD}/m_Q$
- new symmetries for $m_Q \to \infty$
- universal non-perturbative parameters

For $Q \gg \Lambda_{\rm QCD}$ the SCET helps to:

- simplify power counting in $\lambda = \Lambda_{QCD}/Q$
- make symmetries explicit
- sum IR logarithms
- understand factorization in a universal way

Kinematics

Let $p^+ = n \cdot p$, $p^- = \bar{n} \cdot p$ then pion constituents:

$$(p^+, p^-, p^\perp) \sim \left(\frac{\Lambda_{QCD}^2}{Q}, Q, \Lambda_{QCD}\right)$$

 $\sim Q(\lambda^2, 1, \lambda) \qquad \lambda \ll 1$

Iain Stewart – p.4

Soft-Collinear Effective Theory

Bauer, Fleming, Luke B.F.P.S., B.S., B.P.S.

Introduce fields for infrared degrees of freedom

modes	$p^{\mu}=(+,-,\perp)$	p^2	fields
collinear	$Q(\lambda^2,1,\lambda)$	$Q^2\lambda^2$	$\xi_{n,p}, A^{\mu}_{n,q}$
soft	$Q(\lambda,\lambda,\lambda)$	$Q^2\lambda^2$	$q_{s,p}$, $A^{\mu}_{s,q}$
usoft	$Q(\lambda^2,\lambda^2,\lambda^2)$	$Q^2\lambda^4$	q_{us} , A^{μ}_{us}

Typically $\lambda = \frac{\Lambda_{\rm QCD}}{Q}$ or $\lambda = \sqrt{\frac{\Lambda_{QCD}}{Q}}$ and *B* is soft or usoft

Offshell modes with $p^2 \gg Q^2 \lambda^2$ are integrated out

- SCET operators and diagrams are homogeneous in λ
- $\mathcal{L}^{(0)}$ and $\mathcal{O}^{(0)}$ \longrightarrow leading order results

integrate out offshell quarks

 $\bar{n} \cdot A_{n,q} \sim 1 \\ \bar{n} \cdot q_i \sim 1$

Consider matching for heavy-to-light current, $\bar{u} \Gamma b$

no gluons: $\bar{\xi}_{n,p} \Gamma h_v$

integrate out offshell quarks

 $\bar{n} \cdot A_{n,q} \sim 1$ $\bar{n} \cdot q_i \sim 1$

Consider matching for heavy-to-light current, $\bar{u} \Gamma b$

one-gluon: $\bar{\xi}_{n,p} \left(-g\right) \frac{\bar{n} \cdot A_{n,q}}{\bar{n} \cdot q} \Gamma h_v$

integrate out offshell quarks

 $\bar{n} \cdot A_{n,q} \sim 1 \\ \bar{n} \cdot q_i \sim 1$

Consider matching for heavy-to-light current, $\bar{u} \Gamma b$

all orders: $\bar{\xi}_{n,p} W \Gamma h_v$, W a Wilson line

• form of the current is protected by Collinear Gauge Invariance

integrate out offshell quarks

 $\frac{\bar{n} \cdot A_{n,q} \sim 1}{\bar{n} \cdot q_i \sim 1}$

Consider matching for heavy-to-light current, $\bar{u} \Gamma b$

all orders: $\bar{\xi}_{n,p} W \Gamma h_v$, W a Wilson line

- form of the current is protected by Collinear Gauge Invariance
- also constrains form of hard loop corrections:

 $C(ar{\mathcal{P}})\,ar{\xi}_{n,p}\,W\,\Gamma\,h_v$, $ar{\mathcal{P}}$ a label operator

integrate out offshell quarks

 $\frac{\bar{n} \cdot A_{n,q} \sim 1}{\bar{n} \cdot q_i \sim 1}$

Consider matching for heavy-to-light current, $\bar{u} \Gamma b$

all orders: $\bar{\xi}_{n,p} W \Gamma h_v$, W a Wilson line

- form of the current is protected by Collinear Gauge Invariance
- and the form of the collinear Lagrangian:

$$\mathcal{L} = \bar{\xi}_{n,p'} \left\{ n \cdot i D^{us} + gn \cdot A_{n,q} + \left(\mathcal{P}_{\perp} + g \mathcal{A}_{n,q}^{\perp} \right) W \frac{1}{\bar{\mathcal{P}}} W^{\dagger} \left(\mathcal{P}_{\perp} + g \mathcal{A}_{n,q'}^{\perp} \right) \right\} \frac{\bar{\eta}}{2} \xi_{n,p}$$

lain Stewart - p.6

Factorization

$$\begin{array}{ll} \underline{\mathsf{DIS}} & F_1(x,Q^2) = \frac{1}{x} \int_x^1 d\xi \ H(\xi/x,Q,\mu) \ f_{i/p}(\xi,\mu) \\ & [Q^2 \gg \Lambda_{QCD}^2] \\ \\ \underline{B \rightarrow D\pi} & \langle D\pi | \bar{d}u\bar{c}b | B \rangle = NF^{B \rightarrow D}(0) \ \int_0^1 d\xi \ T(\xi,Q,\mu) \ \phi_{\pi}(\xi,\mu) \\ & [Q = \{m_Q, E_{\pi}\} \gg \Lambda_{QCD}] \end{array}$$

Factorization

Iain Stewart – p.7

Factorization

$$\begin{array}{ll} \underline{\text{DIS}} & F_1(x,Q^2) = \frac{1}{x} \int_x^1 d\xi \ H(\xi/x,Q,\mu) \ f_{i/p}(\xi,\mu) \\ \\ & [Q^2 \gg \Lambda_{QCD}^2] \\ \\ \underline{B \rightarrow D\pi} & \langle D\pi | \bar{d}u\bar{c}b | B \rangle = NF^{B \rightarrow D}(0) \ \int_0^1 d\xi \ T(\xi,Q,\mu) \ \phi_{\pi}(\xi,\mu) \\ \\ & [Q = \{m_Q, E_{\pi}\} \gg \Lambda_{QCD}] \end{array}$$
Politzer-Wise, B.B.N.S.

In SCET:

- replaced by power counting and operator analysis
- eg. decoupling of ultrasoft gluons by field redefinitions

$$\xi_{n,p} = Y_n \, \xi_{n,p}^{(0)} \,, \quad A_{n,q} = Y_n \, A_{n,q}^{(0)} \, Y_n^{\dagger}$$

where $Y_n = P \exp \left[ig \int_{-\infty}^x ds \, n \cdot A^{us}(ns) \right]$

• integrating out $p^2\simeq Q^2\lambda$ modes gives soft Wilson line, S_n

lain Stewart – p.7

Applications

Hard Scattering:Factorization proofs for "classic"processes are simplified

•
$$\gamma^*\gamma \to \pi$$
, $\gamma^*\pi \to \pi$

•
$$e^-p \to e^-X$$
, $p\bar{p} \to X\ell^+\ell^-$, $e^-p \to \gamma^{(*)}p'$

B.F.P.R.S.

$B \rightarrow X_s \gamma$ near endpoint

Optical Thm: $\Gamma \sim \text{Im} \int d^4x \ e^{-iq \cdot x} \langle B | T \{ J^{\dagger}_{\mu}(x) J^{\mu}(0) \} | B \rangle$

$\leq \chi^q \qquad \leq \chi^q$		$P_X^2 = m_B(m_B - 2E_\gamma)$
≥ s ⊗ → S	standard OPE	$\sim m_B^2$
b $P_{\rm X}$ b	endpoint region	$\sim m_B \Lambda_{QCD}$
p _B	resonance region	$\sim \Lambda^2_{QCD}$

For endpoint: $E_{\gamma} \gtrsim 2.2 \,\text{GeV}, X_s$ collinear, *B* usoft, $\lambda = \sqrt{\frac{\Lambda_{QCD}}{m_B}}$

$$\frac{1}{\Gamma_0} \frac{d\Gamma}{dE_{\gamma}} = H(m_b, \mu) \int_{2E_{\gamma}-m_b}^{\bar{\Lambda}} dk^+ S(k^+, \mu) J(k^+ + m_b - 2E_{\gamma}, \mu)$$

Korchemsky, Sterman ('94)

SCET gives direct all orders proof of this result (B.P.S.)

Iain Stewart – p.9

 $B \rightarrow X_s \gamma$ near endpoint

$$\frac{1}{\Gamma_0} \frac{d\Gamma}{dE_{\gamma}} = H(m_b, \mu) \int_{2E_{\gamma}-m_b}^{\Lambda} dk^+ S(k^+, \mu) J(k^+ + m_b - 2E_{\gamma}, \mu)$$

CLEO '01

Useful for extracting $\frac{|V_{ub}|^2}{|V_{ts}^*V_{tb}|^2}$ using $B \to X_s \gamma$ and $B \to X_u e \nu$ spectrums

Neubert, Bigi et al., Leibovich, Low, Rothstein

Factorization for $B \to D\pi$

History:	
Naive Factorization:	$\langle O \rangle = N F^{B \to D} f_{\pi}$
Bjorken ('89)	Color Transparency
Dugan & Grinstein ('91)	LEET, $\mathcal{L}=ar{\xi}in\!\cdot\!D\xi$
Generalized Factorization:	$\langle O angle = N F^{B ightarrow D} \int dx \ T(x) \phi_{\pi}(x) \ f_{\pi}$
Generalized Factorization: Politzer & Wise ('91)	$\langle O angle = NF^{B ightarrow D} \int dx \ T(x) \phi_{\pi}(x) \ f_{\pi}$ Proposal
Generalized Factorization: Politzer & Wise ('91) Beneke et al. ('00)	$\langle O angle = NF^{B ightarrow D} \int dx \ T(x) \phi_{\pi}(x) \ f_{\pi}$ Proposal Two loop proof

 $Q = m_b, m_c, E_{\pi} \gg \Lambda_{QCD}$ B, D are soft, π collinear

Iain Stewart - p.10

Other Applications

Reparameterization Invariance: small changes in n, \bar{n}

Chay and Kim

Manohar, Mehen, Pirjol, Stewart

constrains power suppressed collinear operators

Sudakov Logarithms in SCET:

solving RGE's sums Sudakov double logarithms

e.g.: $\begin{array}{ll} B \to X_s \gamma \text{ and } B \to X_u e \nu & \text{B.F.L. and B.F.P.S.} \\ \Upsilon \to X \gamma & \text{Bauer,Chiang,Fleming,Leibovich,Low} \end{array}$

- end of SCET part -

lain Stewart – p.11

Large E vs. Large N_c

Proof Applies to:
$$\bar{B}^0 \rightarrow D^+\pi^-, B^- \rightarrow D^0\pi^-,$$

(and $\pi \rightarrow \rho$), (and $D \rightarrow D^*$), (and $D \rightarrow D^{**}$)

- agreement is at the 0-30% level
- these decays also factor for large N_c

Large E vs. Large N_c

Large N_c Factorization

- disfavored by $D \to K^* \pi$ modes, e.g. large strong phase
- in general gives $\langle D^*X|\bar{d}u\bar{c}b|B\rangle = \langle D^*X'|\bar{c}b|B\rangle\langle X''|\bar{d}u|0\rangle$
- $B \to D^* \omega \pi^-$ and $B \to D^* \pi^+ \pi^- \pi^- \pi^0$ (without X') good for small and large m_X^2 Ligeti, Luke, Wise

Large E vs. Large N_c

Large N_c Factorization

- disfavored by $D \to K^* \pi$ modes, e.g. large strong phase
- in general gives $\langle D^*X|\bar{d}u\bar{c}b|B\rangle = \langle D^*X'|\bar{c}b|B\rangle\langle X''|\bar{d}u|0\rangle$
- $B \to D^* \omega \pi^-$ and $B \to D^* \pi^+ \pi^- \pi^- \pi^0$ (without X') good for small and large m_X^2 Ligeti, Luke, Wise

What about inclusive decays?

Bauer, Grinstein, Pirjol, Stewart (in progress) see also Calmet, Mannel, Schwarze

no
$$X'$$
 in SV limit, $m_b, m_c \gg m_b - m_c \gg \Lambda_{
m QCD}$

 $B \rightarrow D^{*0}X$ (CLEO '97)

agrees ok for large ${\cal E}$

model dependence from $\bar{c}s$

 $B \to D^{*0} X_u$ would be cleaner

lain Stewart - p.12

Conclusions

- Factorization emerges from an effective theory, proofs are simplified
- Universal, same steps for many inclusive/exclusive processes
- New framework for investigating power corrections
- Factorization in $B \to \pi e \nu$, $B \to \pi \pi$, work in progress