

Status of CDF and Prospects

Flavor Physics and CP Violation *Philadelphia May 16-18, 2002*

Richard E. Hughes Department of Physics The Ohio State University

Richard E. Hughes, The Ohio State University

CDF Run II Status

The CDF Collaboration for Run II

>500 Physicists from 52 Institutions Representing 11 Countries

CDFII Detector Systems

- Tracking
 - Silicon
 - ≻707k channels
 - Full coverage of luminous region
 - ➢Radial coverage from 1.35-28cm
 - Central Outer Tracker
 - ≻30k sense wires, 44-132 cm
 - >96 dE/dx samples per track
- Time Of Flight
- Expanded Muon Coverage
- Endplug Calorimeter
- Trigger (pipelined)
 - Drift chamber tracks @L1
 - Silicon tracks @L2
- Fully Digital DAQ (132 nsec)

The Tevatron in Run II

• Upgrades for Run II:

- Main Injector (150 GeV proton) storage ring) replaces Main Ring
- Recycler for storing p-bars
- Shorter interbunch spacing (**396ns**)
- Beam energy Ös 1.96 TeV
- Luminosity:
 - Peak 2.0x10³¹
 - **→** ~48 pb⁻¹ delivered
 - **~**~**30** pb⁻¹ to tape
- Near term:
 - >60 pb⁻¹ by July shutdown
 - **-** >100 pb⁻¹ by end of 2002

Building on Run I Successes

Many B physics Results: 54 Publications

Co-Discovery of the top quark

Measurement of the W Mass

Run II Physics Highlights

• **B** Physics

- > x_s up to ~60
- > CP violation using $B \otimes J/y \times K_s^0$
- CP violation using B ® p⁺ p⁻
- ► Rare Decays: e.g. B +/- ® mmK+/-

• Charm Physics

- Cross sections
- Rare Decays
- QCD
 Very High Et Jets

- Electroweak
 - > W mass measurement
 - Top Physics
 Precise Mass Measurement
 - > Investigation of Properties
- New Particle Searches
 > Higgs
 - Exotica

Example: Bs Mixing

- Modes used:
 - $> B_s \otimes D_s p, D_s 3p$
- Signal ~ 75 k Events
 - >Assumes hadronic trigger
- Flavor tagging: eD² ~11.3%
 > Assumes TOF system
- Proper time resolution
 - > With L00: $\mathbf{s}_{t} \sim 45$ fsec
 - **>** Without L00: $\mathbf{s}_{t} \sim 60$ fsec
- Signal to background
 From Data studies: 0.5 2.0

Are the pieces in place for measuring Bs mixing? What do we need?

- Trigger
 - Level 1 Tracking
 - Level 2 Silicon
- Offline Tracking
 - New Drift Chamber
 - New Silicon System
 - Base: SVX + ISL
 - For B_s : L00
- Flavor Tagging
 - Low Pt Electron and muon ID
 TOF, dE/Dx

All of the upgrades which help the B program naturally contribute to the high Pt program as well.

Richard E. Hughes,

FPCP 2002, 05/16-18/2002 p. 9

CDF L1 and L2 Trackers

XFT Track Reconstruction

Event : 136172 Run : 103584 EventType : 0 TRIG: Unpr. - Fired bits: 1,44,21,23, Pr. - Fired bits: 44, , Myron mod

L1 Tracking Trigger Performance

Pt Turn on curves consistent with expected resolution (< 1.8%/GeV/c) and efficiency (> 95%)

Extrapolated Phi resolution consistent with expectations

Corrected ϕ resolution is 6 mrad, aim is <8 mrad

Richard E. Hughes, The Ohio State University

Improved J/psi Yield -factor of 2-3 over Run I

Electron Identification

Identifying conversion electrons

- Require 1 low P_t electron (>4 GeV)
- Look for opposite sign track

Electron Trigger Status

- Thresholds lower than Run I
 - e.g. 2 GeV dielectrons
- All Electron ID components in place
 - dEdx in COT, plus CPR, CES
- Level 2 triggers with CES are now working

Online: using quantities available to the trigger (L2/L3):

- Pt > 2.0 GeV (each track)
- |d| [100um:1mm]
- Lxy [0:3]cm

Offline:

- Pt > 1.5 GeV (each track)
- |d| > 100um
- Lxy > 0

Online vs Offline Tracking

Trigger "hybrid" tracks:

Full offline tracking:

TOF System Performance

Preliminary calibrations: Indicate ~110psec avg resolution Goal of 100psec is still possible

Require TOF info associated with tracks: p,(K[±])<1.5 GeV/c (no PID) · 6000 WeN:5000 $Ldt = 1.5 \, pb^{-1}$ \$4000 3000 2000 $N(\phi) = 2354 \pm 325$ N(bkg) = 931131000 0.96 0.98 1.02 1.04 1.06 1.08] M(K⁺,K⁻) (GeV/c²) **Cut on TOF info:** p_T(K[±])<1.5 GeV/c + PID ∾ 600 per 1 MeV/c² $Ldt = 1.5 \, pb^{-1}$ $|\Delta t_{\kappa}/\sigma_{t}| < 3$ Entries 400 300 200

 $N(\phi) = 1942 \pm 93$

1.06

1.08

 $M(K^{+},K^{-})$ (GeV/c²)

N(bka) =

1.04

1.02

Richard E. Hughes, The Ohio State University

100

0.96

0.98

Beginning to Look at Physics

Bottom/Charm Physics

- **Reconstruction of B mesons**
- Reconstruction of Charm
- Beginning to develop analysis tools, look at rates

Electroweak

- ➤ W samples
- Z samples

• Top

- We get an extra ~35% increase in xsec due to higher beam energy
- Plus detector improvements means each Run II pb⁻¹ is ~1.5-3.0 Run I pb⁻¹
- Dileptons will be done first
 - Smaller backgrounds
 - Don't need b-tagging, which will take time to understand

B Meson Reconstruction

Lots of Charm from the SVT!

1.85

Charm Studies in progress

- Cross section measurements
- How much charm is direct versus coming from B?
- Rare decays
- CP violation?

1.8

20

0 1.75

1.95

m(Kππ) GeV/c²

1.9

Hi Pt Electron ID

• W sample

- Based on 3.3 pb⁻¹ data
- Require 1 quality electron
 - Et > 20 GeV
 - E/P, Isolation
- Require missing Et>20 GeV

Z Sample

- Based on <u>about</u> 8 pb⁻¹ data
- Require 2 quality electrons
 - Et > 20 GeV (Plug:18 GeV)
 - Isolation (both)
 - E/P: 0.5-2.0 (Central only)

Hi Pt Muon ID

• W sample

- Based on 2.5 pb⁻¹ data
- Require 1 quality muon
 - Pt > 18 GeV
 - Isolation
- Require missing Et>20 GeV

• Z Sample

- Based on <u>about</u> 6 pb⁻¹ data
- Require 2 quality muons
 - Pt > 18 GeV
 - Isolation
- Require pass cosmic filter

Our First Top Candidate?

A top dielectron candidate

- e+e-,two jets with a large missing Et -Run=136286, event=54713

Passes all of the Run 1 Top dilepton selection Requirements.

Displaced vertex as identified by Run 1 tagging algorithm

- At this stage, many things are working:
 - **Trigger:** All of L1, much of L2
 - **Detector:** All major systems are working.
 - **> Offline:** All major parts are working.
- But some have problems:
 - Luminosity still too low
 - **>** L00 is still working on pedestal problems.
 - **SVX coverage is still not complete (for trigger performance)**
- Starting to look at Physics
 - Reconstruction of bottom/charm, investigation of tools (TOF,vertexing, etc)
 - **W's, Z's, and top candidates**
- Luminosity Expectations
 - Possibly 100-200 pb⁻¹ by end 2002, 2fb⁻¹ by 2004