NEW RESULTS ON B_S MIXING FROM LEP

STEPHEN ARMSTRONG European Organization for Nuclear Research (CERN) EP Division Geneva, Switzerland

Flavour Physics and CP Violation (FPCP) Philadelphia, Pennsylvania, USA May 16, 2002

- B_S Mixing Phenomenology
- LEP and the LEP Experiments
- Experimental Strategy
- New/Improved Analyses from ALEPH (2002)
- Results and Interpretation
- Conclusion

B_S MIXING PHENOMENOLOGY

• B_s^0 - \overline{B}_s^0 oscillation frequency proportional to mass difference Δm_s

• Measurement of Δm_s (and Δm_d) permits extraction of CKM elements

$$\frac{\Delta m_{\rm s}}{\Delta m_{\rm d}} = \frac{m_{\rm B_{\rm s}}}{m_{\rm B_{\rm d}}} \cdot \frac{|V_{\rm ts}|^2}{|V_{\rm td}|^2} \cdot \frac{F_{\rm B_{\rm s}}^2 B_{\rm B_{\rm s}}}{F_{\rm B_{\rm d}}^2 B_{\rm B_{\rm d}}} \xrightarrow{\xi^2}_{\substack{\text{contains}\\\text{theo. uncertainties}\\\text{roughly 6\%}}$$

• Time-dependent asymmetry between "mixed" and "unmixed" decays

$$P_{\text{unmix}}^{\text{mix}}(t) = P_{\text{B}_{\text{S}}} \xrightarrow{(-)}{\text{B}_{\text{S}}}(t) = \Gamma_{\text{S}} \frac{e^{-\Gamma_{\text{S}}t}}{2} \left[1 + \cos(\Delta m_{\text{S}}t)\right]$$

Assuming CP conservation and small lifetime differences

S.R. Armstrong

Large Electron Positron (LEP) Collider

LEP Accelerator and Experiments dismantled to make way for LHC

A B_S CANDIDATE EVENT

EXPERIMENTAL STRATEGY

B_S SELECTION AT LEP

4 selection categories of increasing sample size/decreasing purity

S.R. Armstrong

NEW ALEPH FULLY EXCLUSIVE B_S SELECTION

$$B_{s} \rightarrow D_{s}^{(*)-}(\pi^{+}, a_{1}^{+}, \rho^{+})$$

Event Purity

- 12 event classes based on decay
- Purity from helicity angle, m(D_S)

Candidate Events

32 candidates in main peak 48 candidates in satellite region

11 candidates with purity > 80%

IMPROVED ALEPH SEMI-EXCLUSIVE B_S SELECTION

IMPROVED ALEPH SEMI-INCLUSIVE B_S SELECTION

IMPROVED ALEPH SEMI-INCLUSIVE B_S SELECTION

Event Purity determined with NN-based discriminant

Vertex charge and charge multiplicity: $q_l \sum w_i^{K^{(1)}} q_i$, $\sum w_i^{K^{(2)}}$, $q_l \sum w_i p_i^{K^{(3)}} q_i$ K from Fragmentation and B Decay: K^{\pm} (w.r.t. *l* charge), K^0 estimators, $m(K^+K^-)$

INITIAL AND FINAL STATE TAGGING

Determine Particle/Antiparticle State of B_S at Production (Decay)

FINAL STATE TAGGING

INITIAL STATE TAGGING

Draw upon information from both Same and Opposite sides

Same Side Information

- Primary Vertex charge
- Fragmentation Kaon

Opposite Side Information

- Hemisphere "Jet" charge
- Primary Vertex charge
- Secondary Vertex charge
- K^{\pm} and l^{\pm} charge(s)

Combine all information into single Tagging discriminant: performance evaluated as Mistag Rate η

NEW ALEPH INITIAL STATE TAGGING

Additional Same Side Information:

- Fragmentation Kaon (NN selected, charge signed)
 - "Jet" charges (excluding B_S decay products)
- $\cos \theta(B_S)$, $p(B_S)$, N_{tracks}

PROPER TIME MEASUREMENT

Determine Proper Time (i.e., B_s meson lifetime in its rest frame)

$$t = \frac{l m}{p} \qquad \sigma_t = \sqrt{\left(\frac{m}{p}\sigma_l\right)^2 + \left(\left(t \frac{\sigma_p}{p}\right)^2\right)} \qquad \text{Term diminished as} \\ B_s \text{ osc. } <<\tau B_s$$

Two Ingredients

B_s Decay Length (*l*): *Distance from Primary to Seconary Vertex*

- Primary Vertex independent of analysis
- Secondary Vertex dependent upon event selection (impact upon resolution)

typical $\sigma_l = 250 \ \mu m$

B_s Momentum (p) Event Selection Dependent

- Fully Enclusive: sum of decay productsInclusive:
 - Jet momentum
 - Correct for p_V in semileptonic (event energy-momentum cons.)

OSCILLATION FIT

effects (e.g., σ_l, σ_p)

Elements of the Likelihood are evaluated event-by-event

THE AMPLITUDE METHOD

Introduce an Amplitude *A* into probabilities:

$$P_{\text{unmix}}^{\text{mix}}(t) = \Gamma_{\text{s}} \frac{e^{-\Gamma_{\text{s}}t}}{2} \left[1 \mp \cos(\Delta m_{\text{s}}t)\right] \longrightarrow \Gamma_{\text{s}} \frac{e^{-\Gamma_{\text{s}}t}}{2} \left[1 \mp A\cos(\omega t)\right]$$

Maximize Likelihood with respect to Amplitude A for a given test frequency ω Permits combination of different analyses/experiments results

$A = 0$ for $\omega << \Delta m_s$	we evaluated at 05% C L if $\Lambda \pm 1.645\sigma$ $\kappa < 1$
$A = 1$ for $\omega = \Delta m_S$	0 excluded at 35% C.L. II A + $1.0450_A < 1$

Analysis Sensitivity: expected limit at 95% C.L.

RESULTS OF THE THREE NEW ALEPH ANALYSES

S.R. Armstrong

FPCP Philadelphia, PA, USA May 16, 2002

Page 17

DELPHI AND OPAL RESULTS

S.R. Armstrong

FPCP Philadelphia, PA, USA May 16, 2002

Page 18

WORLD COMBINATION

Combine LEP (new ALEPH, DELPHI, OPAL) with CDF and SLD

No measurement, but data are consistent with signal expectation around $\Delta m_s = 16$ to 18 ps^{-1}

S.R. Armstrong

FPCP Philadelphia, PA, USA May 16, 2002

Page 19

CONCLUSIONS

- No observation of B_S mixing
- B_S mixing analyses continue to improve – New/Improved ALEPH results (2002)
- Lower Limit of $\Delta m_s > 14.9 \text{ ps} 1$ - far below sensitivity of 19.3 ps -1
- Possibile hint of signal between $16 18 \text{ ps}^{-1}$
- \bullet Look forward to new results from CDF and $D \ensuremath{\not\! \mathcal{O}}$