Branching ratios and DCPV results for Quasi two-body B decays

Alex Bondar, BINP, Novosibirsk

May/17 PCP. Philadelphia. 2002

- Introduction
- Results on branching fractions measurements
- Search for direct CP violation
- Conclusion

Introduction

- Rare B decays can be described by various tree and penguin diagrams
- They are useful to determine the CKM unitarity triangle
- Search for CP violation and probe new physics

May/17 FPCP. Philadelphia. 2002

B Reconstruction

- Exclusive B decays are kinematically reconstructed by using two (almost) independent variables, Mb and ΔE .
- Mb: beam energy constrained B mass.

 $\sigma \sim 16-40 \text{MeV}$ depending on #tracks,# π^0 ,# γ etc.

May/17 FPCP, Philadelphia, 2002

Belle Particle Identification

- Clear K/ π separation is essential to distinguish decays.
 - DK/D π
 - $K\pi/\pi\pi/KK$ etc.
 - Κ*γ/ργ
- Belle use $\frac{dE}{dx} + ToF + ACC$
 - Wide momentum coverage
 - ACC: Aerogel Cherenkov
 - Combined into likelihood;

PID(K)=
$$\frac{L(K)}{L(K)+L(\pi)}$$
 ~1 for K
~0 for π

• Calibration with $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$

May/17 FPCP, Philadelphia, 2002

BaBar Particle Identification

• DIRC θ_c resolution and K- π separation measured in data \Rightarrow D^{*+} \rightarrow D⁰ $\pi^+ \rightarrow$ (K⁻ π^+) π^+ decays

Proton rejection cut

Br's and DCPV results for Quasi two-body B decays Alex Bondar, BINP, Novosibirsk

May/17 FPCP, Philadelphia, 2002

Continuum suppression

- Shape variables:
 - Thrust angle:
 - The angle between thrust axes of B and other particles
 - Super Fox-Wolfram moment or Fisher discriminant

May/17 FPCP. Philadelphia, 2002

$B \rightarrow \eta^{(,)}h$: Introduction

- The BFs for B → η'K and B → ηK^{*} were first found to be unexpectedly large by CLEO and then confirmed by Belle and BaBar.
- Study of $B^+ \rightarrow \eta K^+$ and $\eta \pi^+$ can help understand the penguin interfernce between $\eta h \eta' h$ decays.
- The decay $B^+ \rightarrow \eta \pi^+$ is predicted to have large direct CP violation. (Rosner *et al.*)
- By studying both rates and CP asymmetries, one can determine both the relative strong phases of penguin and tree amplitudes and ϕ_2 . (Chiang & Rosner, hep-ph/0112285)
- Results from CLEO's search: [PRL 85, 520 (2000)] $\mathcal{B}(B \to \eta K^+) < 6.9 \times 10^{-6} (2.2^{+2.8}_{-2.2})$ $\mathcal{B}(B \to \eta \pi^+) < 5.7 \times 10^{-6} (1.2^{+2.8}_{-1.2})$
- Theory predictions for the BFs are around few $\times 10^{-6}$.

May/17 FPCP, Philadelphia, 2002

Belle results on $B \rightarrow \eta K^* / \eta' K$

 $B^0 \to \eta K^{*0}$

 $B^+ \to \eta K^{*+}$

 $B^+ \to \eta' K^+ \qquad B^0 \to \eta' K_S^0$

May/17FPCP. Philadelphia. 2002

BaBar results on $\eta^{()}K^{(*)}$

May/17 FPCP, Philadelphia, 2002

Belle results on B $\rightarrow \eta K / \eta \pi$

May/17 FPCP. Philadelphia. 2002

$B \rightarrow \eta$ ' h summary

Mode	CLEO	BaBar	Belle
$\eta \prime K^+$	$80^{+10}_{-9}\pm7$	$70\pm8\pm5$	$77.9^{+6.2}_{-5.9}\pm$
$\eta' K^0$	$89^{+18}_{-16}\pm9$	$42^{+13}_{-11} \pm 4$	$68.0^{+10.4}_{-9.6}\pm$
$\eta \prime \pi^+$	< 12	$5.4^{+3.5}_{-2.6}\pm0.8$	_

Branching ratios are given in units of 10⁻⁶

CLEO: PRL 85, 520 (2000)

May/17 FPCP. Philadelphia. 2002

BaBar: C.Dallapiccola, 9th Heavy Flavor, Sep. 2001

PRL 87, 221802 (2001)

Belle: H.C.Huang, XXXVII Recontres de Moriond, March 2002.

$B \to \eta \ h \ summary$

Mode	CLEO	BaBar	Belle
ηK^{*+}	$26.4^{+9.6}_{-8.2}\pm3.3$	$22.1^{+11.1}_{-9.2}\pm3.3$	$26.5^{+7.8}_{-7.0}\pm3.0$
ηK^{*0}	$13.8^{+5.5}_{-4.6}\pm1.6$	$19.8^{+6.5}_{-5.6}\pm1.7$	$16.5^{+4.6}_{-4.2}\pm1.2$
ηK^+	< 6.9	_	$5.3^{+1.8}_{-1.5}\pm0.6$
$\eta \pi^+$	< 5.7		$5.4^{+2.0}_{-1.7} \pm 0.6$

Branching ratios are given in units of 10⁻⁶

CLEO: PRL 85, 520 (2000)

May/17

FPCP. Philadelphia. 2002

BaBar: C.Dallapiccola, 9th Heavy Flavor, Sep. 2001

Belle: H.C.Huang, XXXVII Recontres de Moriond, March 2002.

$B \rightarrow \omega h$: Introduction

- Study of rare decay B[−] → ωh[−] will test current models of B decays and could be used to search for direct CP violation
- In 1998, CLEO reported the observation of $B^- \rightarrow \omega K^-$ decays [PRL 81, 272 (1998)]
- But with new and larger data set, CLEO found $\omega\pi^-$ is larger than ωK^- [PRL **85**, 2881 (2000)]
- BaBar confirms $\omega \pi^- > \omega K^-$ but with smaller $\omega \pi^-$ branching ratio [PRL **87**, 221802 (2001)]

BaBar result on B⁺ $\rightarrow \omega \pi^+$

May/17 FPCP, Philadelphia, 2002

Belle results on $B \rightarrow \omega h$

• Simultaneous unbinned 2D fit to M_{bc} and ΔE .

May/17 FPCP, Philadelphia, 2002

$B \rightarrow \omega h$ summary

Mode	CLEO	BaBar	Belle
ωK^+	< 7.9	< 4	$9.9^{+2.7}_{-2.4}\pm1.0$
ωK^0	< 21	< 13	_
$\omega \pi^+$	$11.3^{+3.3}_{-2.9}\pm1.4$	$6.6^{+2.1}_{-1.9}\pm0.7$	< 8.2
$\omega \pi^0$	< 5.5	< 3	_

Branching ratios are given in units of 10⁻⁶

CLEO: PRL 85, 2881 (2000)

May/17 FPCP. Philadelphia. 2002

BaBar: C.Dallapiccola, 9th Heavy Flavor, Sep. 2001

PRL 87, 221802 (2001)

Belle: H.C.Huang, XXXVII Recontres de Moriond, March 2002.

BaBar results on $B \rightarrow \rho \pi$

May/17 FPCP. Philadelphia. 2002

$B \rightarrow \rho \pi$ summary

Mode	CLEO	BaBar	Belle
$\rho^\pm \pi^\mp$	$27.6^{+8.4}_{-7.4}\pm4.2$	$28.9 \pm 5.4 \pm 4.3$	$21.5^{+6.3}_{-6.0}\pm3.3$
$ ho^0\pi^+$	$10.4^{+3.3}_{-3.4}\pm2.1$	_	$8.0^{+2.2}_{-2.0}\pm0.7$
$ ho^0\pi^0$	< 5.5	< 10.6	< 5.3
$a_0^\pm\pi^\mp$	_	$6.2^{+3.0}_{-2.5}\pm1.1$	

Branching ratios are given in units of 10⁻⁶

CLEO: PRL 85, 2881 (2000)

BaBar: C.Dallapiccola, 9th Heavy Flavor, Sep. 2001

Belle: Preliminary

Belle results on $B^+ \rightarrow K^+ \pi^+ \pi^-$

Fit components:

- Signal 463 ± 32
- Continuum 2645 \pm 110
- $B\bar{B}$ grneric 2097 \pm 95
- Rare Background:

140 events (fixed) red histogram

May/17 FPCP, Philadelphia, 2002

Belle results on $B^+ \rightarrow K^+ \pi^+ \pi^-$

May/17 FPCP. Philadelphia. 2002

Belle results on $B^+ \rightarrow K^+ K^+ K^-$

Fit components:

- Signal 289 \pm 20
- Continuum 987 \pm 35
- $B\bar{B}$ grneric 67 \pm 20
- Rare Background:
 - o none

May/17 FPCP, Philadelphia, 2002

Belle results on $B^+ \rightarrow K^+ K^+ K^-$

May/17 FPCP. Philadelphia. 2002

Belle results on quasi two-body decays

Two body mode	Efficiency, %	Yield, events	Significance, σ	$\mathcal{B}_{B^+ ightarrow Rh^+} imes \mathcal{B}_{R ightarrow h^+ h^-}, 10^{-6}$
$K^{st o}(892)\pi^+$	18.9	60^{+13}_{-12}	6.2	$12.9\substack{+2.8+1.4+2.3\\-2.6-1.4-4.5}$
$K_X(1400)\pi^+$	16.2	58^{+14}_{-13}	4.9	$14.5\substack{+3.5+1.8+3.3\\-3.3-1.8-6.5}$
$ ho^o(770)K^+$	15.1	9.0^{+13}_{-12}	0.8	< 12
$f_o(980)K^+$	17.8	42^{+11}_{-10}	5.0	$9.6\substack{+2.5+1.5+3.4\\-2.3-1.5-0.8}$
$f_X(1300)K^+$	16.9	46^{+14}_{-13}	3.9	$11.1_{-3.1-1.4-2.9}^{+3.4+1.4+7.2}$
$\phi(1020)K^+$	23.6	$42_{-7.9}^{+8.7}$	7.2	$7.2^{+1.5}_{-1.4}{}^{+0.9}_{-0.9}{}^{+0.4}_{-0.4}$
$f_X(1500)K^+$	21.3	146^{+17}_{-17}	12	$27.6^{+3.2+3.5+1.4}_{-3.2-3.5-1.4}$

	May/17	
FPCP.	Philadelphia.	2002

BaBar results on $B \rightarrow \phi K^{(*)}$

May/17 FPCP. Philadelphia. 2002

$B \rightarrow \phi K^{(*)}$ summary

Mode	CLEO	BaBar	Belle
ϕK^+	$5.5^{+2.1}_{-1.8}\pm0.6$	$7.7^{+1.6}_{-1.4}\pm0.8$	$14.6^{+3.0}_{-2.8}\pm2.0$
ϕK^0	< 12.3	$8.1^{+3.1}_{-2.5}\pm0.8$	$13.0^{+6.1}_{-5.2}\pm2.6$
ϕK^{*+}	< 22.5	$9.7^{+4.2}_{-3.4}\pm1.7$	—
ϕK^{*0}	$11.5^{+4.5+1.8}_{-3.7-1.7}$	$8.7^{+2.5}_{-2.1}\pm1.1$	—

Branching ratios are given in units of 10⁻⁶

CLEO: PRL 86, 3718 (2001)

May/17 FPCP. Philadelphia. 2002

BaBar: C.Dallapiccola, 9th Heavy Flavor, Sep. 2001

PRL 87, 151801 (2001)

Belle: H.C.Huang, XXXVII Recontres de Moriond, March 2002.

Motivation: CP violation

Significant amplitudes for Penguins for most modes
 − P↔T interference ⇒ possible direct CP violation

physics!

May/17 FPCP, Philadelphia, 2002

Search for direct CP violation

May/17 FPCP. Philadelphia. 2002

Conclusion

- The many of new results were provided during last three years successful operation of B-factories.
- The level of accessible branching fractions is order $(3-5)\times10^6$
- First attempts of the search for direct CP violation have been done. No statistically significant asymmetries in charged B-meson decays were observed yet.
- New measurements with lager statistics $(100 \ fb^{-1})$ are coming.

May/17 FPCP. Philadelphia. 2002