New Methods for getting at Alpha and Gamma

David Atwood FPCP May 17, 2002

Outline

- What are we Measuring
- Gamma Tree-Tree Interference
- Alpha Tree-Penguin Interference
- Conclusions

What are we Measuring

• The Standard Model predicts that V is unitary.

$$V = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \qquad \begin{bmatrix} V_{ud}V_{ub}^* \\ V_{cd}V_{cb}^* \\ V_{td}V_{tb}^* \end{bmatrix}$$

• Unitarity relation:

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

What do We Know so Far

- Experimental inputs:
 - 1. $K\bar{K}$ oscillation: ϵ_K .
 - 2. Rate of $b \to u$ transitions: V_{ub}/V_{cb} .
 - 3. The rate of $B\bar{B}$ oscillation.
 - 4. The lower bound on the rate of $B_s \overline{B}_s$ oscillation.
 - 5. Bound on $\sin 2\beta = 0.78 \pm .08$ from BaBaR and BELLE
- \bullet 68% and 95% c.l. combined fit.

Tree-Tree Interference

- The interference of these two quark level diagrams is sensitive to the angle γ .
- In order for these two diagrams to interfere, the must be embedded in a meson level process with a common initial and final state.
- A determination of $B^- \to \overline{D}{}^0 K^-$ is hard. $B^- \to l^- \nu X$ is a background to $\overline{D}{}^0 \to l^- \nu + X$.
- Therefore at least two D^0 decay modes are required.

• $B^- \to D^0 K^-$ can interfere with $B^- \to \overline{D^0} K^-$ if the D^0 and $\overline{D^0}$ decay to a common final state (eg $K^+\pi^-$). [Gronau; DA Soni and Dunietz]

- Note, the CP asymmetries are expected to be large (O(100%): (color allowed)(DCS)≈(color suppressed)(CA)
- The same principle can be used in $B^0 \to D^0 K^0$. Here there is also oscillation.

$B^- \to D^0 K^-$

- The key is to consider common decay mode of D^0 and $\overline{D^0}$ to allow interference. For instance $D^0 \to K^+\pi^-$ and $D^0 \to K_s\pi^0$.
- What you measure:
 - The base rate $B^- \to D^0 K^-$
 - The relevant D^0 branching ratios
 - The four rates

 $* B^{-} \rightarrow K^{-}(D^{0} \rightarrow K^{+}\pi^{-})$ $* B^{+} \rightarrow K^{+}(D^{0} \rightarrow K^{-}\pi^{+})$ $* B^{-} \rightarrow K^{-}(D^{0} \rightarrow K_{s}\pi^{0})$ $* B^{+} \rightarrow K^{+}(D^{0} \rightarrow K_{s}\pi^{0})$

- What you need to solve for
 - The base rate $B^- \to \overline{D^0} K^-$
 - The net strong phases in each channel
 - The weak phase γ
- With two modes there is discrete ambiguity in γ , this is reduced if multiple modes are considered.

- Just two modes used:
 - $-K^+\pi^-$ (solid)
 - $-K_s\pi^0$ (short dashes)
- Confidence regions assuming that $N_B(acceptance) = 10^8$: 99%; 90%; 68%

- All the modes used:
- $K^+\pi^-$ (solid) $K_s\pi^0$ (short dashes) $K^+\rho^-$ (long dashes) $K^+a_1^-$ (dash-dot) $K_s\rho^0$ (dash-dot-dot) $K^{*+}\pi^-$ (dash-dash-dot)
- Confidence regions assuming that $N_B(acceptance) = 10^8$: 99%; 90%; 68%

- Projecting the normalized likelihood distribution onto the γ axis in the cases where $\gamma = 15^{\circ}$; 30°; 60° and 90°.
- Confidence regions assuming that $N_B(acceptance) = 10^8$: 99%; 90%; 68%

$B^0 \to D^0 K$ Case

- The same method as above can be used in $B^0 \to D^0 K^{0*}$ if $K^{0*} \to K^+ \pi^-$ (self tagging) [Dunietz].
- In the case $B^0 \to D^0 K_s$, the oscillation is proportional to $\sin(\beta \alpha)$ [Bigi and Sanda; London and Kayser], however the *D* must be flavor tagged:
 - $-D \rightarrow l\nu + X$: background
 - $-D^{**} \rightarrow D^+\pi^-$: need to distinguish D_1 from D_2 .
 - $-D^0 \rightarrow K^- \pi^+$: quantum interference.

• However in the case of $D^0 \to K^-\pi^+$ both β and γ can in principle be extracted from the same data set [London Kayser]

Tree-Penguin Interference

- The interference of these two quark level diagrams is sensitive to either α $(b \rightarrow d)$ or γ $(b \rightarrow s)$.
- Generally, some theoretical input is needed.
- ElectroWeak Penguins (i.e. Z or γ penguins) are also a danger. They have the weak phase of the penguin but the isospin properties of the tree.

- Some Examples
 - Comparison of $B^0 \to \rho P$ with $B^0 \to \omega P$

- Comparison of B_u , B_d and $B_s \to VV$ with pure penguin.
- Comparison of $B^0 \to K\overline{K}$ versus $B_s \to K\overline{K}$ (see next talk)

$B^0 \to \rho/\omega P$

- In this case, we need to use indirect CP violation in order to obtain enough information to solve for α .
- For a given final state f, the time dependent decay rate is:

$$\frac{1}{\Gamma_{B^0}} \frac{d\Gamma(f)}{d\tau} = \frac{1}{2} e^{-|\tau|} \left(X_f + bY_f \cos x_b \tau - bIm(Z_f) \sin x_b \tau \right)$$

• $\tau = t\Gamma$, b=+1 (-1) for B^0 ($\overline{B^0}$) and $Re(Z_f)^2 = X_f^2 - Y_f^2 - Im(Z_f)^2$

$$X_f = (|A_f|^2 + |\overline{A}_f|^2)/2$$

$$Y_f = (|A_f|^2 - |\overline{A}_f|^2)/2$$

$$Z_f = e^{-2i\beta} A_f^* \overline{A}_f$$

• If the ρP and ωP modes are measured, then one can eliminate the penguin and solve for α :

$$\alpha = \frac{1}{2} \left[\arg(Z_{\rho} - Z_{\omega}) \pm \cos^{-1} \left(\frac{X_{\rho} - X_{\omega}}{|Z_{\rho} - Z_{\omega}|} \right) \right] + \begin{cases} 0 \\ or \\ \pi \end{cases}$$

Figure 1: Using $N_B(acceptance) = 10^9$ The χ^2 function for the minimum χ^2 solution at various values of α is shown for the inputs given in eqn. (15) where the true value of $\alpha = 75^{\circ}$. The $B^0 \rightarrow \rho/\omega \pi^0$ results are shown as a dashed curve, the $B^0 \rightarrow \rho/\omega \eta$ results are shown as a dotted curve while the sum is shown as a solid curve. The magnitude of the penguin for the minimum χ^2 solution is shown in units of 10^{-3} by the dot-dashed curve.

- As usual, multiple modes helps solve ambiguities.
- In this case, how well you can do depends crucially on how the ambiguous solutions are distributed.
- This method is complimentary to the $\rho\pi$ method of Quinn and Snyder.
 - Both involve the same amplitudes
 - ρ versus ω does not depend crucially on the phase structure of the Dalitz plot.
 - Snyder-Quinn provides a number of observables which can be important in resolving ambiguities

Figure 2: The χ^2 function and penguin amplitude as in Fig. 1 with $\alpha = 75^{\circ}$ and the inputs as in eqn. (15) except with $\psi_p^{\eta} = 190^{\circ}$.

Conclusions

- At $N_B \sim O(10^9)$, B factories can determine α and γ .
- It is crucial that the number of observables is greater than the number of parameters
- $B \to DK$
 - Free of Penguin Problems
 - Need several D decays
- $B \to \rho/\omega P$
 - Common penguin gives α
 - Time dependent
 - Several values of P need to be considered