

Measure CP violation in the B system \implies test the SM \implies find New Physics.

Smoking-gun signals for new physics:

• $B^0_d(t) \to \Psi K_s$ vs. $B^0_d(t) \to \phi K_s$ (β)

•
$$B^{\pm} \rightarrow DK^{\pm}$$
 vs. $B^0_s(t) \rightarrow D^{\pm}_s K^{\mp}$ (γ)

•
$$B_s^0(t) \rightarrow \Psi \phi$$
 (0)

Probes new physics in the $b \rightarrow s$ FCNC ($B_s^0 - \overline{B}_s^0$ mixing or the $b \rightarrow s$ penguin). No hadronic uncertainties.

Question: are there clean probes of new physics in the $b \rightarrow d$ FCNC?

NO.

Consider $b \rightarrow d$ penguin:

 $A = P_{u}V_{ub}^{*}V_{ud} + P_{c}V_{cb}^{*}V_{cd} + P_{t}V_{tb}^{*}V_{td}$

Can eliminate any one CKM combination in terms of the other two:

$$(P_u - P_c)V_{ub}^*V_{ud} + (P_t - P_c)V_{tb}^*V_{td} \quad (\alpha)$$

$$(P_c - P_u)V_{cb}^*V_{cd} + (P_t - P_u)V_{tb}^*V_{td} \quad (\beta)$$

$$(P_u - P_t)V_{ub}^*V_{ud} + (P_c - P_t)V_{cb}^*V_{cd} \quad (\gamma)$$

There is a "CKM ambiguity": don't know the relative weak phase.

In order to test for new physics in the $b \rightarrow d$ FCNC, need a theoretical assumption to break the CKM ambiguity.

(D.L., N. Sinha, R. Sinha)

 $B^0_d \to K^0 \bar{K}^0$

Pure $b \rightarrow d$ penguin:

$$A = P_u V_{ub}^* V_{ud} + P_c V_{cb}^* V_{cd} + P_t V_{tb}^* V_{td}$$
$$= \mathcal{P}_{uc} e^{i\gamma} e^{i\delta_{uc}} + \mathcal{P}_{tc} e^{-i\beta} e^{i\delta_{tc}}$$

Note: \mathcal{P}_{uc} and \mathcal{P}_{tc} include CKM info. 4 parameters: \mathcal{P}_{uc} , \mathcal{P}_{tc} , $\Delta \equiv \delta_{uc} - \delta_{tc}$, α Recall:

 $\Gamma(B^0_d(t) \to f) \sim X + Y \cos \Delta m t - Z_{\rm I} \sin \Delta m t \label{eq:gamma}$ where

$$X \equiv \frac{|A|^2 + |\bar{A}|^2}{2} , \quad Y \equiv \frac{|A|^2 - |\bar{A}|^2}{2} ,$$
$$Z_I \equiv \text{Im} \left(e^{-2i\beta} A^* \bar{A} \right) , \quad Z_R \equiv \text{Re} \left(e^{-2i\beta} A^* \bar{A} \right) .$$
$$(Z_R^2 = X^2 - Y^2 - Z_I^2 .)$$
$$3 \text{ OBSERVABLES, 4 UNKNOWNS.}$$
Can express 3 theoretical parameters in terms of 4^{th} :

$$\mathcal{P}_{tc}^2 = \frac{Z_R \cos 2\alpha + Z_I \sin 2\alpha - X}{\cos 2\alpha - 1}$$

 $B^0_d \to K^* \bar{K}^*$

 K^* is $K^*(892),~K_1(1270),~\dots$ Similar analysis as for $B^0_d\to K^0\bar{K}^0$:

$$\mathcal{P}_{tc}'^{2} = \frac{Z_{R}' \cos 2\alpha + Z_{I}' \sin 2\alpha - X'}{\cos 2\alpha - 1}$$

Therefore

$$\frac{\mathcal{P}_{tc}^2}{\mathcal{P}_{tc}'^2} = \frac{Z_I \sin 2\alpha + Z_R \cos 2\alpha - X}{Z_I' \sin 2\alpha + Z_R' \cos 2\alpha - X'}$$

Note: CKM info in \mathcal{P}_{tc} and \mathcal{P}'_{tc} cancels in the ratio. If we knew the value of $\mathcal{P}^2_{tc}/\mathcal{P}'_{tc}^{\ 2}$, we could extract α . $B^0_s \to K^{(*)} \bar{K}^{(*)}$.

 $B^0_s
ightarrow K^0 ar{K}^0$: pure b
ightarrow s penguin:

$$A = P_{u}^{(s)} V_{ub}^{*} V_{us} + P_{c}^{(s)} V_{cb}^{*} V_{cs} + P_{t}^{(s)} V_{tb}^{*} V_{ts}$$
$$= \mathcal{P}_{uc}^{(s)} e^{i\gamma} e^{i\delta_{uc}^{(s)}} + \mathcal{P}_{tc}^{(s)} e^{i\delta_{tc}^{(s)}}$$

Note: $\mathcal{P}_{uc}^{(s)}$ is negligible compared to $\mathcal{P}_{tc}^{(s)}$. Therefore the measurement of $B(B_s^0 \to K^0 \bar{K}^0)$ gives $|\mathcal{P}_{tc}^{(s)}|$. Similarly, the measurement of $B(B_s^0 \to K^* \bar{K}^*)$ gives $|\mathcal{P}_{tc}^{'(s)}|$. CLAIM:

$$rac{{{\mathcal P}_{tc}^{(s)}}^2}}{{{\mathcal P}_{tc}^{'(s)}}^2} = rac{{\mathcal P}_{tc}^2}}{{{\mathcal P}_{tc}^{'}}^2} \; .$$

Note: CKM matrix elements cancel in ratios, so this is a statement about hadronic parameters – breaks CKM ambiguity.

A similar method applies to non-CP-conjugate decays of the form $K^0\bar{K}^*$, $K^*\bar{K}^0$.

IN ALL CASES, THE THEORETICAL ERROR IS SMALL, AT MOST 5% (AND MAY WELL BE EVEN SMALLER). Experimental considerations:

- Branching ratios $\sim 10^{-6}$.
- K^* , \overline{K}^* detected through their decays to charged π 's and K's only \Longrightarrow good K/π separation.
- No π^0 detection needed.

Discrete ambiguities:

Potentially a serious drawback: method allows extraction of α with a 16-fold (!) ambiguity.

- Can be reduced to 4-fold by considering two different pairs of $K^{(*)}\bar{K}^{(*)}$ final states (e.g. $K^0\bar{K}^0$ and $K^*\bar{K}^*$; $K^0\bar{K}^*$ and $K^*\bar{K}^0$).
- We expect P_u , P_c in $b \rightarrow d$ penguins to be at most 50% of $P_t \Longrightarrow \mathcal{P}_{uc}/\mathcal{P}_{tc} < 0.5$ for all decays. This reduces the ambiguity to 2-fold: α , $\alpha + \pi$.

Other methods for measuring $\alpha: B_d^0(t) \to \pi^+\pi^-$ (+ isospin analysis), $B \to \rho\pi$ (+ Dalitz-plot analysis). These methods have their difficulties. Could the $B \to K^{(*)}\bar{K}^{(*)}$ method be first? Unlikely. But: a discrepancy between the values of α would point to new physics in the $b \to d$ penguin.

Theoretical Error

We claim the equality of a double ratio of matrix elements:

$$\frac{r_t}{r_t^*} \equiv \frac{\left\langle K^0 \bar{K}^0 \right| H_d \left| B_d^0 \right\rangle / \left\langle K^0 \bar{K}^0 \right| H_s \left| B_s^0 \right\rangle}{\left\langle K^* \bar{K}^* \right| H_d \left| B_d^0 \right\rangle / \left\langle K^* \bar{K}^* \right| H_s \left| B_s^0 \right\rangle} = 1 \ .$$

The two decays in r_t are related by SU(3) (U-spin). Same for r_t^* :

$$\begin{split} r_t &= \frac{\left\langle K^0 \bar{K}^0 \right| H_d \left| B_d^0 \right\rangle}{\left\langle K^0 \bar{K}^0 \right| H_s \left| B_s^0 \right\rangle} = 1 + C_{SU(3)} ,\\ r_t^* &= \frac{\left\langle K^* \bar{K}^* \right| H_d \left| B_d^0 \right\rangle}{\left\langle K^* \bar{K}^* \right| H_s \left| B_s^0 \right\rangle} = 1 + C_{SU(3)}^* , \end{split}$$

so that

$$\frac{r_t}{r_t^*} = 1 + (C_{SU(3)} - C_{SU(3)}^*) \ .$$

Although there is no symmetry limit in which $(C_{SU(3)} - C^*_{SU(3)}) \rightarrow 0$, we expect significant cancellations between $C_{SU(3)}$ and $C^*_{SU(3)}$.

We write

$$\begin{aligned} r_t &= \left\langle K^0 \bar{K}^0 \right| H_d \left| B^0_d \right\rangle / \left\langle K^0 \bar{K}^0 \right| H_s \left| B^0_s \right\rangle \\ &= \left\langle K^0 \bar{K}^0 \right| H_d \left| B^0_d \right\rangle / \left\langle K^0 \bar{K}^0 \right| U^{\dagger} H_d U \left| B^0_s \right\rangle \ , \end{aligned}$$

Two main sources of error:

- "final-state" corrections, $U\left|K^{0}ar{K}^{0}
 ight
 angle
 eq \left|K^{0}ar{K}^{0}
 ight
 angle
 eq \left|K^{0}ar{K}^{0}
 ight
 angle$
- "initial-state" corrections, $U | B_s^0 \rangle \neq | B_d^0 \rangle$

Will examine these in turn.

But note: sources of SU(3) breaking in r_t^* are very similar to those in r_t : $U | K^* \bar{K}^* \rangle \neq | K^* \bar{K}^* \rangle$ and $U | B_s^0 \rangle \neq | B_d^0 \rangle \Longrightarrow$ not unreasonable to expect sizeable cancellations between $C_{SU(3)}$ and $C_{SU(3)}^*$.

Final-state corrections

 $K^0 = \bar{s}d \Longrightarrow$ write

 $p_s \approx x p_K$, $p_d \approx (1-x) p_K$.

U-spin transformation exchanges \bar{s} and d quarks:

$$U\psi_K = \psi(d(xp_K)\bar{s}(1-xp_K)) \ .$$

Final-state U-spin correction due to the presence of a piece in the kaon light-cone distribution (LCD) which is antisymmetric under the exchange $x \rightarrow 1 - x$.

We know that the kaon LCD is symmetric in the high-energy limit $E_K \rightarrow \infty$. What about at $E_K \sim m_B/2?$

- Pion LCD is extremely close to its asymptotic form, $\phi_{\pi}(x) \sim x(1-x)$, at $\mu^2 \sim 10 \text{ GeV}^2 \Longrightarrow$ kaon LCD may also be very close to its (symmetric) asymptotic form.
- Can test this experimentally: measure the kaon LCD. If symmetric, no final-state corrections. Model independent.
- Model calculations: an antisymmetric piece of the kaon LCD tends not to contribute much to the overall amplitude => final-state corrections unimportant.

Initial-state corrections

Need framework to perform calculations. Within QCD factorization, write

$$r_t = \frac{A_{fac}^d \left[1 + x^d \right]}{A_{fac}^s \left[1 + x^s \right]} \ .$$

 A^d_{fac} and A^s_{fac} are the factorizable contributions to $B^0_d \to K^0 \bar{K}^0$ and $B^0_s \to K^0 \bar{K}^0$; x^d and x^s are the corresponding nonfactorizable contributions.

• SU(3) corrections due to nonfactorizable corrections negligible.

• Write factorizable contributions as

$$\begin{split} A^d_{fac} &= f_K \, F_{B_d \to K} \, \int T(x) \phi_{\bar{K}}(x) dx \;, \\ A^s_{fac} &= f_K \, F_{B_s \to \bar{K}} \, \int T(x) \phi_K(x) dx \;. \end{split}$$

SU(3) breaking due to kaon LCD's is negligible \implies main contribution to SU(3) breaking comes from the form factors $F_{B_d \to K}$ and $F_{B_s \to \overline{K}}$.

Form factors

 $B \to K$ form factors related to $D \to K$ form factors: in chiral limit and heavy-quark limit

$$\frac{F_{B_d \to K}/F_{B_s \to \bar{K}}}{F_{\bar{D} \to K}/F_{\bar{D}_s \to \bar{K}}} = 1 \ .$$

 \implies measurement of $D \rightarrow K$ form factors determines $B \rightarrow K$ form factors to $O(\Delta M_D/M_D) \simeq 5\%$.

Also:

$$\frac{F_{B_d \to K}/F_{B_s \to \bar{K}}}{F_{\bar{D} \to K}/F_{\bar{D}_s \to \bar{K}}} = 1 + a \frac{\Delta M_D}{M_D} ,$$

$$\frac{F_{B_d \to K^*}/F_{B_s \to \bar{K}^*}}{F_{\bar{D} \to K^*}/F_{\bar{D}_s \to \bar{K}^*}} = 1 + a^* \frac{\Delta M_D}{M_D} ,$$

a and a^* are O(1). So:

$$\frac{F_{B_d \to K}/F_{B_s \to \bar{K}}}{F_{B_d \to K^*}/F_{B_s \to \bar{K}^*}} = \frac{F_{\bar{D} \to K}/F_{\bar{D}_s \to \bar{K}}}{F_{\bar{D} \to K^*}/F_{\bar{D}_s \to \bar{K}^*}} \times \left[1 + (a - a^*)\frac{\Delta M_D}{M_D}\right]$$

But *B* decays similar, expect $a \simeq a^*$. Model calculations:

$$(a-a^*)\left(\frac{\Delta M_D}{M_D}\right) < 1\%$$
.

 \implies measurement of $D \rightarrow K$ form factors determines $B \rightarrow K$ form factors to $\lesssim 1\%$.

Theory: in limit $m_b \to \infty$ and $E_K \to \infty$, $B \to K$ and $B \to K^*$ transitions are described by 3 form factors. Calculate form factors in QCD sum rules. Find

$$\frac{F_{B_d \to K}/F_{B_s \to \bar{K}}}{F_{\bar{D} \to K}/F_{\bar{D}_s \to \bar{K}}} = 1 ,$$

i.e. initial-state SU(3) breaking cancels in numerator and denominator \Longrightarrow combined with QCD factorization, $r_t/r_t^* = 1$, up to corrections of $O(\Delta M_B/M_B) \simeq 2\%$.

Bottom line: cannot *prove* that initial-state corrections to $r_t/r_t^* = 1$ are small. However, all model calculations suggest this to be the case. This can be tested experimentally.

Conclusions

New method for measuring $\alpha : B^0_{d,s}(t) \to K^{(*)} \bar{K}^{(*)}$ decays.

Good for hadron colliders: branching ratios $\sim 10^{-6}$; K^* , \bar{K}^* detected through their decays to charged particles; no π^0 detection needed.

Compare with α as obtained in $B \to \pi\pi$ or $B \to \rho\pi$. Can find new physics in $b \to d$ FCNC.

Requires theoretical input. But model calculations suggest that the error is at most 5%, and could well be quite a bit less. Can be tested experimentally. So the method is quite clean.