"Hot Topics" from BaBar

Vasia Shelkov Lawerence Berkeley National Laboratory

BaBar Collaboration

"Hot Topics" from BaBar

$$B \longrightarrow \eta'\!K^{(*)}$$

$$B^{\scriptscriptstyle\pm} \longrightarrow h^{\scriptscriptstyle\pm} h^{\scriptscriptstyle\mp} h^{\scriptscriptstyle\pm}$$

$$B^{0} \rightarrow \eta' K^{*0}$$

$$B \rightarrow \eta' K$$

$$\delta B^{0} \rightarrow \eta' K^{0}$$

$$\delta B^{+} \rightarrow \eta' K^{+}$$

$$B^{\pm} \to \pi^{\pm} \pi^{\mp} \pi^{\pm}$$

$$B^{\pm} \to \pi^{\pm} \pi^{\mp} K^{\pm}$$

$$B^{\pm} \to \pi^{\pm} K^{\mp} K^{\pm}$$

$$B^{\pm} \to K^{\pm} K^{\mp} K^{\pm}$$

Common Analyses Features

Source of Bs

$$e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$$

Approach

all analyses are blinded

Energy flow around B-thrust axis

We found that S/B discriminating power of 9-cone Fisher is identical to using a single polynomial L_2

Analyses of $B \rightarrow \eta^{(\prime)} K^{(*)}$ decays

Large rate for $B \rightarrow \eta' K$ decays

Event selection for $B \rightarrow \eta^{(\prime)} K^{(*)}$ decays

- selection of resonances: η, η'(ππη, ργ), ρ, K^* , K_8^0
- suppress continuum with: $\cos(T_{B-sig}, T_{B-other}) \le 0.9$
- extract signal with: max $L(\Delta E, m_{ES}, F, m(resonance), H(PV))$
- PDFs were validated with independent sample of fully reconstructed events

Results for $Br(B \rightarrow \eta' K^*)$ measurement

ML fit quantity	2000(20fb ⁻¹)	2001(35fb ⁻¹))
Events to fit			5
On resonance	659	1074	
Off resonance	92	138	4
Signal yeild			3
On resonance	$0.0^{+1.3}_{-0.0}$	$5.2^{+3.9}_{-2.8}$	2
Off resonance	$0.0_{-0.0}^{+0.5}$	$0.0^{+0.6}_{-0.0}$	
MC ε(%)	16.9	16.9	0 2 4 6 8 10 12 14 16 18
Stat. sign.(σ)	-	1.9	-2LnL-vs-BF
$B(\times 10^{-6})$	$0.0^{+2.2}_{-0.0}$	$7.9^{+5.8}_{-4.2}$	
UL(incl. syst.)	11.7×10^{-6}	23.5×10 ⁻⁶	
B(B	$\rightarrow \eta' K^*) = (4.0^{+3.0}_{-2.0})$	$^{5}_{4}\pm1.0)\times10^{-6}($	$(<13\times10^{-6})$

Results for $Br(B \rightarrow \eta' K)$ measurements

Quantity	$\eta'_{\eta\pi\pi}K^+$	$\eta'_{\rho\gamma} K^+$	$\eta'_{\eta\pi\pi}K^0$	$\eta'_{ ho\gamma}K^0$
Events to fit				
On-resonance	2199	34992	665	7400
Off-resonance	254	3847	59	790
Signal Yield				
On-res data	152^{+14}_{-13}	293_{-22}^{+23}	29^{+7}_{-6}	106^{+14}_{-13}
Off-res data	$-1.6^{+1.8}_{-0.9}$	$-1.3^{+4.0}_{-2.9}$	$0.0^{+0.7}_{-0.0}$	$0.0^{+2.8}_{-0.0}$
$B\overline{B} BG$ subtraction	0.0	13±6	0.0	4.1±2.1
MC ε(%)	23.1	24 ± 0	23.5	24.5
Stat. sign.(σ)	26	20	10	15
$B(10^{-6})$	65±6	71±6	32±7	67±9

Projections for $B \rightarrow \eta' K^0$ fit

All $Br(B \rightarrow \eta' K^{(*)})$ results

in units of 10⁻⁶

Mode	CLEO	BaBar(2001)	BaBar(2002)
$\eta'K^{\!+}$	$80^{+10}_{-9}\pm7$	$70 \pm 8 \pm 5$	$67 \pm 5 \pm 5$
$\eta' K^0$	$89^{+18}_{-16}\pm9$	$42^{+13}_{-11}\pm4$	$46 \pm 6 \pm 4$
$\eta' K^{*_0}$	$7.8^{+7.7}_{-5.7}(<\!\!24)$		$4.0^{+3.5}_{-2.4}\pm1.0(<13)$

 $\begin{array}{c} \mbox{Motivation} \\ \mbox{charmless decays of charged Bs are interesting for} \\ \mbox{direct-CP searches and extraction of CKM angle } \end{array}$

	Selected	Input Mode			
PID cross-feeds	as	πππ	Κππ	ΚΚπ	KKK
in %	πππ	15.3	- (1.7)	0.014	0.001
	Κππ	0.4	15.1 +	- 3.2	0.04
	ΚΚπ	0.0	0.29	17.7	⊢ <u>(5.5</u>)
	KKK	0.0	0.0	0.17	21.6

Charm Veto

>> veto all possible combinations of K and π which end up within $\pm 3\sigma(30 \text{MeV/c}^2)$ mass window of D⁰ peak

> veto m($\pi^+\pi^-$) and m(K⁺K⁻) mass combinations within $\pm 3\sigma(45 \text{MeV/c}^2)$ of J/ Ψ , $\Psi(2S)$ peaks

Continuum Suppression $\pi\pi\pi$: $\cos(\theta_{\rm T}) < 0.575$ F < -0.11</th>K $\pi\pi$: $\cos(\theta_{\rm T}) < 0.700$ F < -0.03</td>KK π : $\cos(\theta_{\rm T}) < 0.725$ F < +0.10</td>KKK: $\cos(\theta_{\rm T}) < 0.875$ F < +0.30</td>

Signal Box
$$|\Delta E - \langle \Delta E \rangle| < 60 \text{ MeV} \quad |m_{ES} - m_B| < 8.0 \text{ MeV/c}^2$$

Grand Side Band $|\Delta E - \langle \Delta E \rangle| < 0.1 \text{ GeV} \quad 5.21 < m_{ES} < 5.25 \text{ GeV/c}^2$

Background propagation

Using ARGUS shape of m_{ES} , and 2^{nd} order polynomial for ΔE , the background from GSB is propagated into the Signal Box(using multiplicative factor R)

Dalitz plot for $B \rightarrow \pi \pi \pi$ decays

Dalitz plot for $B \rightarrow K\pi\pi$ decays

Dalitz plot for $B \rightarrow KK\pi$ decays

Dalitz plot for $B \rightarrow KKK$ decays

Results

 $B \mathop{\rightarrow} K\pi\pi$

Results	
---------	--

Signal Mode	πππ	Κππ	ΚΚπ	KKK
Signal Box	951	1269	573	603
GSB	5470	4652	3239	1100
Average Eff.	15.3±1.1	15.4 ± 0.9	18.3 ± 0.9	22.5±1.0
Bkg. Factor R	0.145 ± 0.006	0.153 ± 0.006	0.150 ± 0.006	0.159 ± 0.01
1) $\Sigma_{i} N_{1i} / \varepsilon_{i}$	5839 ± 212	8055 ± 255	3413 ± 156	2734±111
2) $\Sigma_{i} \operatorname{RN}_{2i} / \varepsilon_{i}$	$4812 \pm 73 \pm 193$	$4434 \pm 73 \pm 171$	$2802 \pm 54 \pm 111$	$780 \pm 23 \pm 47$
3) $\Sigma_i N_x \varepsilon'' \varepsilon_i$	$391 \pm 8 \pm 2$	$14 \pm 1 \pm 1$	$435 \pm 5 \pm 8$	_
4) $\Sigma_{i} n_{Di} / \varepsilon_{i}$	157±27	401±50	-	_
5) n _x	_	-124±55	56±11	_
$6)\sum_{i}\frac{(N_{1i}-RN_{2i}-N_X\varepsilon"-n_{Di})}{\varepsilon_i} -n_X\varepsilon$	478±224±195±34±26	3330±266±186±56±186	121±166±112±21±5	1954±114±47±13±82
Br. Ratio($\times 10^{-6}$)	$8.5 \pm 4.0 \pm 3.6$	$59.2 \pm 4.7 \pm 4.7$	9 2.2 \pm 2.9 \pm 2	2.0 $34.7 \pm 2.0 \pm 1.7$
90% U (×10 ⁻⁶)	<15		<7	