

New BaBar Results on Rare Leptonic B Decays

Valerie Halyo Stanford Linear Accelerator Center (SLAC)

valerieh@slac.stanford.edu

Table of Contents

- Motivation to look for $B^0 \to \ell^+ \ell^$ and $B^- \to K^- \nu \overline{\nu}$
- Analysis Strategy
- Measurement Criteria
- Cut Optimization
- Systematics
- Results

Motivation $B^- \to K^- \nu \overline{\nu}$

ABAR

Standard Model Feynman diagrams for $B^- \to K^- \nu \overline{\nu}$

- SM prediction $\mathcal{B}(B^- \to K^- \nu \overline{\nu}) = 3.8^{+1.2}_{-0.6} \times 10^{-6}$
- CLEO best limit $\mathcal{B}(B^- \to K^- \nu \overline{\nu}) < 2.4 \times 10^{-4}$

- The second largest BR for rare B - decays involving leptons is final state
- Only one operator in SM
- Theoretically clean Enhancements from beyond the SM:
 - Fourth generation
 - Extra vector-like down quark
 - SUSY violating R-parity
 - FCNC Z'

Motivation $B^0 \rightarrow \ell^+ \ell^-$

Standard Model Feynman diagrams for $B^0 \rightarrow \ell^+ \ell^-$

• $\mathcal{B}(B^0 \to e^+ e^-) \sim 10^{-15}$

- $\mathcal{B}(B^0 \to \mu^+ \mu^-) \sim 10^{-10}$ • $\mathcal{B}(B^0 \to e^+ \mu^-)$
- $\mathcal{B}(B^0 \to e^+ \mu^-)$ just allowed due to $\Delta m_{\nu_i} \neq 0$

- Enhancements from beyond the SM:
 - MHDM with NFC and large $tg\beta$
 - Extra vector-like down quark
 - MSSM (large $tg\beta$)
 - Leptoquark
 - SUSY violating R-parity

Analysis Strategy for $B^- \to K^- \nu \overline{\nu}$

• Tag one B,
$$B^+ \to \overline{D}^0 \ell^+ \nu(X)$$

BABAR

\overline{D}^0 modes	D^* modes
$\overline{D}{}^{0} \rightarrow K^{+}\pi^{-}$	$\overline{D}^{*0} ightarrow \overline{D}{}^0 \gamma$
$\overline{D}{}^0 \to K^+ \pi^- \pi^- \pi^+$	$\overline{D}^{*0} ightarrow \overline{D}{}^0 \pi^0$
$\overline{D}{}^0 \to K^+ \pi^- \pi^0$	$D^{*-} ightarrow \overline{D}{}^0 \pi^-$

- Remove the daughters of the tagged B from the event
- Veto events with more than one charged track
- Attribute the remaining particles with the signature expected from $B^- \to K^- \nu \overline{\nu}$
- No background subtraction applied for UL

This method yield 0.5% of B^+ decays reconstructed as tags The tagging efficiency was corrected using a double tags sample.

Measurement Criteria for Tagging $B^+ \rightarrow \overline{D}^0 \ell^+ \nu(X)$

- Require one lepton with $P^* > 1.3 \text{ GeV}$
- Loose consistency on \overline{D}^0 and $\overline{D}^0 \ell^+$ Vtx
- $P^*_{\overline{D}^0} > 0.5 \,\text{GeV}$
- $M_{\overline{D}^0\ell^+} > 3 \text{ GeV}$
- $-2.5 < \cos(\theta_{B,D\ell}) < 1.1$
- $N_{tracks} \leq 3$
- $E_{neutral} < 1 \, \text{GeV}$

$$\cos \theta_{B \, D \ell} \equiv \frac{2 \, E_B E_{D \ell} - m_B^2 - m_{D \ell}^2}{2 \, |\vec{p}_B| |\vec{p}_{D \ell}|}$$

where E_B and $|\vec{p}_B|$ in $\Upsilon(4S)$ frame.

Semi-exclusive \overline{D}^0 Mass Reconstruction

FPCP 2002

BABAR

valerieh@slac.stanford.edu

Measurement Criteria for the Signal $B^- \rightarrow K^- \nu \overline{\nu}$

- One Kaon with charge opposite to the tagged lepton
- $P_{K^+}^* > 1.5 \text{GeV}$

- $-0.9 < \cos \theta_{K\ell} < 0.8$
- $N_{IFR} = 0$ clusters consistent with coming from a neutral hadron
- $E_{neutral} < 0.5 \text{GeV}$

BABAR

Signal and Sideband Definition

• Signal box - $E_{\text{left}} < 0.5 \text{ GeV}$ - $(m_D - m_D^{\text{fit}}) < 3\sigma_D^{\text{fit}}$ • E_{left} and D^0 mass Sideband - $1. < E_{\text{left}} < 2.5 \text{ GeV}$ - $(m_D - m_D^{\text{fit}}) > 3\sigma_D^{\text{fit}}$ BABAR

Systematics and Efficiency Correction

- Tag $B^+ \to \overline{D^0}(K\pi)\ell^+\nu X$ and the other to $B^- \to D^0 \ell^- \overline{\nu}$
- Use double-tags to extract a correction to the efficiency calculated from the signal MC.
- Double tag yield:
 - In data 148 \pm 15
 - In MC 175 \pm 16
- Rate in data is 0.85 the rate in simulation
- ϵ_{signal} is corrected by 0.92 ± 0.06 where the error is taken as the systematic

Systematic Errors

Quantity	$\delta \varepsilon / \varepsilon [\%]$
B -counting	1.1
tagging efficiency	6.0
Kaon momentum	1.8
Kaon selection	2.0
E_{left}	4.3
N_{IFR}	3.6
Total	8.7

The resulting overall signal efficiency is 0.1%

Unblinded Results

 $B\overline{B}/C\overline{C}/UDS$ MC should be scaled with 1.09/2.21/3.56 to on-peak lumi

The UL for 50 fb⁻¹ with 90% CL for $B^- \to K^- \nu \overline{\nu}$ is: $BR(B^- \to K^- \nu \overline{\nu}) < 9.4 \times 10^{-5}$

Analysis Strategy $B^0 \rightarrow \ell^+ \ell^-$

- Reconstruct the signal B with two high momentum leptons
- Apply cuts to suppress the background

- Estimate the background in signal box
 - Fit the data in the sidebands
 - Normalization from data
- No background subtraction applied for Upper Limit

Measurement Criteria

- Event Preselection
 - $N_{trk} \ge$ 3 in drift chamber
 - $R_2 \leq 0.98$
 - Two tracks with $p^* > 1.8 \text{ GeV}$
- Track selection
 - Tight Doca
 - $22^{\circ} < \theta_{lab} < 120^{\circ}$
- Event selection
 - $E_{tot} < 11 \, \text{GeV}$
 - $P_{miss} < 3 \, \text{GeV}$
 - $N_{mult} (\equiv N_{trk} + N_{\gamma}/2) \ge 6$, $E_{\gamma} > 80 \text{ MeV}$

- Vertexing
 - Well reconstructed vertex
 - $\mathcal{P}(\chi^2) > 0.1\%$
- Shape Variables
 - -|T| < 0.9
 - $|\cos(\theta_T)| < 0.84$
- B-reconstruction

Cuts on standard variables m_{ES} and ΔE are optimized for best UL.

Shape Variables Optimization

The simultaneous upper limit optimization of |T| and $\cos(\theta_T)$ yielded somewhat harder cuts than $S^2/(S+B)$.

BABAR

 $S^2/(S+B)$

UL optimization $|T| < 0.9, \cos(\theta_T) < 0.84$

The resulting signal efficiency after applying all cuts amounts to:

- $\varepsilon = 19.3 \pm 0.4_{stat}$ % for $B^0 \rightarrow e^+e^-$
- $\varepsilon = 18.8 \pm 0.3_{stat}\%$ for $B^0 \rightarrow \mu^+\mu^-$
- $\varepsilon = 18.3 \pm 0.3_{stat}$ % for $B^0 \rightarrow e^{\pm} \mu^{\mp}$

These numbers include the different size of the signal box in the three channels.

	$B^0 \rightarrow e^+ e^-$		$B^0 \rightarrow \mu^+ \mu^-$		$B^0 \to e^{\pm} \mu^{\mp}$	
Box Name	m_{ES}	ΔE	m_{ES}	ΔE	m_{ES}	ΔE
Signal Box	5.273–5.285	-0.105-0.050	5.274–5.285	-0.050-0.050	5.274–5.284	-0.070–0.050
Grand Sideband	5.200-5.260	-0.400-0.400	5.200-5.260	-0.400-0.400	5.200-5.260	-0.400-0.400

Blind Analysis: $B^0 \rightarrow \ell^+ \ell^-$

Background Sources

The main sources of background for the three $B^0 \rightarrow \ell^+ \ell^-$ channels

- A common background composed of real leptons for all channels comes from $c\overline{c}$
- In additions fake muon are introduced by misidentified pions in the $B^0 \to \mu^+ \mu^-$ and $B^0 \to e^\pm \mu^\mp$ channels
- $\gamma\gamma$ processes contribute to $B^0 \to e^+e^-$ and $B^0 \to e^\pm\mu^\mp$

Background Estimation

The Unbinned Maximum Likelihood fit results are:

Background estimate				
$B^{0} \to e^{+}e^{-} \mid B^{0} \to \mu^{+}\mu^{-} \mid B^{0} \to e^{\pm}\mu^{\mp}$				
0.60 ± 0.24	0.49 ± 0.19	0.51 ± 0.17		

Systematics

The systematic uncertainty is estimated by using a control sample $B^0 \rightarrow J/\psi K_S^0$, with $J/\psi \rightarrow \ell^+ \ell^-$.

	$B^0 \rightarrow \mu^+ \mu^-$		$B^0 \rightarrow e^+ e^-$	
Quantity	$\delta x/x$ [%]	$\delta \varepsilon / \varepsilon [\%]$	$\delta x/x$ [%]	$\delta \varepsilon / \varepsilon [\%]$
Track smearing and efficiency, per track	0.7	1.4	0.7	1.4
Electron identification, per electron		1.4	1.8	3.6
Hadron misidentification, per track	50		50	
ΔE	2.4 0.9	2.56	3.4 \oplus 2.8	4.4
m_{ES}	1.7	1.7	0.1	0.1
$\cos \theta_T$	0.5	0.5	0.7	0.7
T	2.5	2.5	2.5	2.5
N_{mult}	1.4	1.4	6.0	6.0
E_{tot}	0.009	0.009	1.5	1.5
$ p_{miss} $	0.13	0.13	0.1	0.1
primary Vertex	0.14	0.14	0.1	0.1
B-candidate Vertex	0.05	0.05	1.6	1.6
Sub-Total	2.92	2.92	6.9	6.9
Total		4.68		8.2

Results

Channel	N_{exp}	N_{obs}	N_{BG}	ε [%]	UL (90% CL)
$B^0 \rightarrow e^+ e^-$	1×10^{-8}	/ 1	0.60 ± 0.24	$19.3 \pm 0.40_{stat} \pm 1.60_{syst}$	$3.3 imes 10^{-7}$
$B^0 \to \mu^+ \mu^-$	4×10^{-3}	0	0.49 ± 0.19	$18.8 \pm 0.28_{stat} \pm 2.00_{syst}$	$2.1 imes 10^{-7}$
$B^0 \to e^{\pm} \mu^{\mp}$		0	0.51 ± 0.17	$18.3\pm0.38_{stat}\pm1.50_{syst}$	$2.1 imes10^{-7}$

BaBar Results for the Rare B Decays

The Upper Limits values for the BR of $B^0 \rightarrow \ell^+ \ell^$ and $B^- \rightarrow K^- \nu \overline{\nu}$ at 90% CL are:

Mode	CLEO	Belle	Babar	
$\mathcal{B}(B^- \to K^- \nu \overline{\nu})$	2.4×10^{-4}		9.4×10^{-5}	
$\mathcal{B}(B^0 \to e^+e^-)$	$8.3 imes 10^{-7}$	6.3×10^{-7}	$3.3 imes 10^{-7}$	
$\mathcal{B}(B^0 \to \mu^+ \mu^-)$	$6.1 imes 10^{-7}$	$2.8 imes 10^{-7}$	2.0×10^{-7}	
$\mathcal{B}(B^0 \to e^{\pm} \mu^{\mp})$	$15.0 imes 10^{-7}$	$9.4 imes 10^{-7}$	$2.1 imes 10^{-7}$	
Luminosity	9.1 fb ⁻¹	21.3 fb^{-1}	54.4 fb ^{-1}	