

Alexei Garmash

High Energy Research Organization (KEK), Japan; Budker Institute of Nuclear Physics (BINP), Russia

on behalf of the

Belle Collaboration

- Introduction
- Results
- Summary
- Conclusion

Most of the results are obtained with ${\cal L}=$ 43.1 fb^{-1} (45.4imes10 $^6~Bar{B}$ pairs)

Introduction

The dominant contributions to charmless three-body B decays are expected to come from the $b \to s(d)$ penguins and $b \to u$ tree transitions

 $b \rightarrow s$ transition contributes to only final states with odd number of kaons (s quarks): $K\pi\pi$, KKK

 $b \rightarrow u$ tree and $b \rightarrow d$ penguin transitions contributes to final states with even number of kaons (s quarks): $\pi\pi\pi$, $K\bar{K}\pi$. The contribution to states with odd number of kaons is Cabibbo suppressed

''wrong flavor'' final states such as $K^+K^+\pi^$ and $K^-\pi^+\pi^+$ are expected to be negligibly small ($\sim 10^{-11}$) in SM \rightarrow good test of physics beyound the SM

Results: $B^0 o K^+ \pi^- \pi^0$

dashed line - total background level

dotted line - continuum background

Large combinatorial background from low momentum π^0

Complicated $B\bar{B}$ background shape

Fit Results:

 $N(K^{+}\pi^{-}\pi^{0}) = 173 \pm 30$

Analysis of quasi-two-body intermediate states is in progress

Results: $B^{+(0)}
ightarrow K^{+(0)} K^+ K^-$

$$N(K^+K^+K^-) = 289 \pm 20$$

 $N(K_SK^+K^-) = 88.8 \pm 11.8$

No background from rare B decays found

Garmash

Charmless three-body $B \rightarrow Khh$ decays

p. 11

Results: $B^+ ightarrow K^- \pi^+ \pi^+$ & $B^+ ightarrow K^+ K^+ \pi^-$

Analysis method:

- \checkmark subdivide ΔE into bins (20 MeV)
- \checkmark extract signal yield in each ΔE bin from the fit to the corresponding $M_{\rm bc}$ distribution
- \checkmark fit resulting ΔE distribution

Fit components:

- Signal: shape fixed from $B^+ \to \bar{D}^0 \pi^+$ data; normalization free
- $B\overline{B}$ generic: fixed from MC
- Rare Background:
 - $\diamond \ B \to hh, \ B \to Khh, \ B \to Khhh$ fixed from signal MC

Fit results:

$$N(K^{-}\pi^{+}\pi^{+}) = 14 \pm 12$$

 $N(K^{+}K^{+}\pi^{-}) = -4.7 \pm 9.0$

Results: $B^+
ightarrow K^+ K^- \pi^+$

Fit Results:

$$\mathrm{N}(K_S K^{\pm} \pi^{\mp}) = 1.2 \pm 11$$

$$N(K_S K_S \pi^+) = -6.4 \pm 8.1$$

Summary

Three-body branching fractions

					_
Mode	Efficiency, %	Yield , events	$B, 10^{-6} (43 fb^{-1})$	${\cal B}, 10^{-6}~(29{ m fb}^{-1})$	_
$K^+\pi^-\pi^+$	21.1	463 ± 32	59.3 ± 4.1	$55.6 \pm 5.8 \pm 7.7$	*
$K^0\pi^-\pi^+$	5.23	94.7 ± 14.4	41.7 ± 7.2	$53.2\pm11.3\pm9.7$	**
$K^+\pi^-\pi^0$	11.6	$173\substack{+30.5\\-29.6}$	—	$47.1\pm8.2\pm6.3$	***
$K^+K^+K^-$	22.2	289 ± 20	35.8 ± 2.5	$35.3\pm3.7\pm4.3$	*
$K^0K^+K^-$	7.10	88.8 ± 11.8	32.3 ± 4.8	$34.8\pm6.7\pm6.5$	**
$K_SK_SK^+$	5.76	27.5 ± 6.7	13.1 ± 3.2	_	-
$K_SK_SK_S$	3.86	$8.2^{+3.5}_{-2.9}$	$5.5^{+2.3}_{-1.9}$	_	_
$K^+K^-\pi^+$	13.8	49 ± 15	$9.1 \pm 2.8 (< 14)$	< 12	*
$K^+K^+\pi^-$	14.2	-4.7 ± 9	< 2.0	< 3.2	*
$K^-\pi^+\pi^+$	17.0	14 ± 12	< 5.4	< 7.0	*
$K^0K^{\pm}\pi^{\mp}$	4.53	1 ± 11	< 9.2	< 13.4	**
$K_SK_S\pi^+$	5.31	-6.4 ± 8.1	< 3.3	_	_
					-

* published in Phys. Rev. D65:092005, 2002

PRELIMINARY

****** to be submitted to PRL

******* preliminary result

Conclusion

- A number of branching fraction of B mesons decays to three-body charmless final states have been measured
- The $K_SK_SK^+$ and $K_SK_SK_S$ three-body final states have been observed for the first time; evidence for the $K^+K^-\pi^+$; first result on $K_SK_S\pi^+$
- A number of quasi-two-body final states have been observed: $K^*(892)^0\pi^+$, $f_0(890)K^+$ (first $B\to SP$ decay), etc.
- The extraction of quasi-two-body branching fractions requires the full amplitude analysis of the Dalitz plot
- Analysis of three-body final states provides new possibilities for the study of CP violation in B decays