Charm Weak Decays in the SM and Beyond

Gustavo Burdman

Lawrence Berkeley National Laboratory

Outline

- <u>Semileptonic Charm Decays</u>: The impact of precision measurements in exclusive semileptonic *D* decays.
- $\frac{D^0 \overline{D^0} \text{ Mixing}}{\text{wall}}$: How close is the Long Distance wall?
- Rare Charm Decays in the Standard Model:
 - Radiative Decays: $D \to X\gamma$.
 - Semileptonic Modes: $D \to \pi \ell^+ \ell^-$, $D \rho \pi \ell^+ \ell^-$,...
- New Physics: Effects of Supersymmetry.
 - Non-universal soft term in SUSY with R_P conservation.
 - Effects of R_P violation.
- <u>Conclusions</u>

D Semileptonic Decays

- Why do we need precision measurements of exclusive semileptonic decays? $D \to K^{(*)} \ell \nu$ and $D \to \pi(\rho) \ell \nu$.
- Study of hadronic physics at m_c . Form-factor normalization and q^2 dependence.
- Impact on *B* physics I: Comparison with $B \to \pi \ell \nu$ and $B \to \rho \ell \nu$. Test of *HQET*: are $1/M_Q$ large? V_{ub} ? New Physics: same form-factors for rare decays $B \to K^* \ell^+ \ell^-$,
- Impact on B physics II: Are the SU(3) corrections under control?
- Impact on *B* physics III: Precision SL and Leptonic decays of charm will test Lattice calculations => Lattice predictions of $B \to \pi \ell \nu, B \to K^* \ell^+ \ell^-$, etc.
- $|V_{cd}|$.

Heavy Quark Symmetry (Isgur-Wise '89)

In the $m_Q \to \infty$ limit $(m_Q \gg \Lambda_{\rm QCD})$,

Flavor Symmetry: Light degrees of freedom can't tell the heavy flavor.
 => b ↔ c. Applications: extraction of |V_{cb}| from inclusive and exclusive semileptonic b → cℓν decays. Works best at low recoil (Luke's Theorem

at zero recoil).

• Spin Symmetry: Spin decouples in the $m_Q \to \infty$ limit. E.g.: $\Delta m_B \equiv m_{B^*} - m_B \longrightarrow 0$.

But for Heavy \longrightarrow Light decays applications are more limited:

 $\begin{array}{cccccccc} D & \longrightarrow & K^* \ell \nu \\ SU(2)_F & \updownarrow & & \updownarrow & SU(3) \\ & B & \longrightarrow & \rho \ell \nu \end{array}$

Heavy Quark Symmetry and $H \to \pi \ell \nu$

• One form-factor:

 $\langle \pi(k) | (\bar{q}\gamma_{\mu}c) | D(p) \rangle = f_{+}(q^{2})(P+k)_{\mu} + f_{-}(q^{2})(P-k)_{\mu}$ But if $m_{\ell} \to 0$

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{cd}|^2 k^3 |f_+(q^2)|^2$$

=> precision measurement of $d\Gamma/dq^2$ in $D \to \pi \ell \nu$ gives $f_+(q^2)$.

• B Physics Impact: Heavy Quark Symmetry => $B \to \pi \ell \nu$ given by same f_+ up to heavy mass scaling:

$$\frac{f_{+}^{B \to \pi}(v.k)}{f_{+}^{D \to \pi}(v.k)} = \left(\frac{\alpha_s(m_b)}{\alpha_s(m_c)}\right)^{-6/25} \sqrt{\frac{m_B}{m_D}} \times \left\{1 + C\left(\frac{1}{m_b} - \frac{1}{m_c}\right) + \dots\right\}$$

with $v.k = E_{\pi}$ in the heavy meson rest frame.

$$= E_{\pi} < 1 \text{ GeV}$$

Chiral Symmetry helps at low recoil (M. Wise; G.B. and J. Donoghue '92) • Chiral Perturbation Theory for Heavy Hadrons (ChPTHH) predicts $f_+(v.p_{\pi})$ at low p_{π} to be

$$f_{+}(v.p_{\pi}) = \frac{g_{D^{*}D\pi}f_{D^{*}}}{2f_{\pi}} \left(\frac{m_{D}-v.p_{\pi}}{v.p_{\pi}+\Delta}\right) + \frac{f_{D}}{2f_{\pi}}$$

with $\Delta_D \equiv m_{D^*} - m_D$. This is dominated by the D^* pole contribution.

This is valid to Next-to-Leading Order in the 1/Mexpansion. (G.B., Z. Ligeti, M. Neubert and Y. Nir '93)

Gustavo Burdman

SU(3) Breaking

How large is SU(3) breaking in semileptonic form-actors?

Relevant e.g. for $B \to \pi \ell \nu \leftrightarrow B \to K \ell^+ \ell^-$.

• Compare $D \to \pi \ell \nu$ to $D \to K \ell \nu$. What can we expect? The lesson from decay constants:

$$\frac{f_{D_s}}{f_D} - 1 \simeq \frac{(1 + 3g_{D^*D\pi}^2)}{32\pi^2 f_{\pi}^2} \left\{ m_K^2 \log\left(\frac{m_K^2}{\mu^2}\right) + m_{\eta}^2 \log\left(\frac{m_{\eta}^2}{\mu^2}\right) \right\}$$

Which gives $f_{D_s}/f_D \simeq 1.10$. (B. Grinstein, E. Jenkins, A. Manohar and M. Wise '92)

- For the semileptonic decays, the SU(3) breaking coming from the chiral logarithms is around 20 30%, strongly depending on the value of g_{D*Dπ}. (A. Falk and B. Grinstein '93)
- But these are not the only terms. How large are the counter-term contributions? The data will tell us.

 D^0 - \overline{D}^0 Mixing

The mixing rate is

$$r_D \equiv \frac{\Gamma(D^0 \to \ell^- X)}{\Gamma(D^0 \to \ell^+ X)} \simeq \frac{1}{2} \left[x^2 + y^2 \right]$$

with $x \equiv \Delta m / \Gamma$ and $y \equiv \Delta \Gamma / 2\Gamma$.

Theoretical Expectations

- Short distance in the SM: Box + Penguin diagrams give $x \stackrel{<}{\sim} 10^{-4}$.
- But potentilly large contributions from higher dimensional operators could give x ~ 10⁻³. (With very large uncertainties). This typically signals large long distance contributions!
- Long Distance effects in x and y from real intermediate states => expect

 $x_{
m LD} \simeq y \stackrel{<}{\sim} 10^{-3}$

• Relative strong phase δ , between CF and DCS amplitudes rotates x, y to

$$x' = x \cos \delta + y \sin \delta$$

 $y' = y \cos \delta - x \sin \delta$

• Data seems to suggest δ not small.

Gustavo Burdman

Is there room for New Physics beyond the SM ? (*H. Nelson '99*)

Rare Charm Decays

Q:

- $D \to X\gamma, \ D \to X\ell^+\ell^-, \ldots$ Can Rare Charm Decays test the SM ?
- Short distance SM very suppressed.
- Long distance (e.g. resonances) dominate rates.
- Is there room to see new physics ?

A:

- $D \to X\gamma$, $D^0 \to \gamma\gamma$: Dominated by large long distance contributions.
- D → Xℓ⁺ℓ⁻: Long distance dominates the rates but maybe room for short distance away from the resonances.
- Other modes: $D^0 \to \ell^+ \ell^-$, $D \to X \nu \bar{\nu}$, etc. Very small short and long distance => only large new physics effects.

	ı	$F(x_i)$	$\lambda_i F(x_i)$
	d	1.6×10^{-9}	3.4×10^{-10}
$c \rightarrow u \gamma$	s	2.9×10^{-7}	6.3×10^{-8}
	b	3.3×10^{-4}	3.2×10^{-8}
	u	2.3×10^{-9}	1.3×10^{-12}
$b \rightarrow s \gamma$	с	2.0×10^{-4}	7.3×10^{-6}
	t	0.4	1.6×10^{-2}

Factorization of Short Distance Physics in $c \rightarrow u$ Transitions

Effective Hamiltonian at low energies:

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} \sum_{i=1}^{10} C_i(\mu) \ \mathcal{O}_i(\mu)$$

Integrating out heavy particles.

- C_i : Wilson coefficients. Content of the short distance physics, e.g. the stuff inside the loop.
- \mathcal{O}_i : Operator basis. All possible (Lorentz invariant, etc.) giving $c \to u$. Matrix elements contain long distance physics.

New Physics will affect matching conditions on the C_i at $\mu = M$. E.g. in the SM $M \simeq M_W$.

Radiative Decays

(G.B., E. Golowich, J. Hewett and S. Pakvasa '95; B. Bajc et al. '95; C. Greub et al. '96)

• $c \to u\gamma$: Short distance determined by $C_7(\mu)$ corresponding to the photon penguin diagram

and to the operator

$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_c (\bar{u}_L \sigma_{\mu\nu} c_R) F^{\mu\nu}$$

The branching ratio is

$$Br(D \rightarrow X_u \gamma) = \dots |C_7(m_c)|^2$$

which is $\mathcal{O}(10^{-17})$.

• Operator mixing, mainly with $O_2 = (\bar{u}_L \gamma_\mu q_L) (\bar{q}_L \gamma^\mu c_L),$ plus large QCD corrections, result in

$$C_7(m_c) \longrightarrow C_7^{\text{eff.}}(m_c)$$

which give $\operatorname{Br}(c \to u\gamma) \simeq \mathcal{O}(10^{-8}).$

 Long Distance contributions to D → Xγ: Take one example: D⁰ → ρ⁰γ. Two types of LD diagrams: Pole diagrams:

Vector Meson Dominance:

 \mathbf{D}^0

 D^*

 ρ^0

Mode	\mathcal{A} (in GeV ⁻¹)		$V^{-1})$	$B_{D \to M\gamma} (10^{-5})$
	P-I	P-II	VMD <	,
$D_s^+ \to \rho^+ \gamma$	8.2	-1.9	± 6.0	6 - 38
$D^0 \rightarrow \bar{K}^{*0} \gamma$	5.6	-5.9	± 10	7 - 12
$D_s^+ \rightarrow b_1^+ \gamma$	7.2			~ 6.3
$D_s^+ \rightarrow a_1^+ \gamma$	1.2			~ 0.2
$D_s^+ \to a_2^+ \gamma$	2.1			\sim 0.01
$D^+ \to \rho^{-+} \gamma$	1.3	-0.4	± 3.5	2 - 6
$D^+ \rightarrow b_1^+ \gamma$	1.2			~ 3.5
$D^+ \rightarrow a_1^+ \gamma$	0.5			~ 0.04
$D^+ \rightarrow a_2^+ \gamma$	3.4			~ 0.03
$D_s^+ \to \tilde{K^{*+}}\gamma$	2.8	-0.5	± 1.9	0.8 - 3
$D_s^+ K_2^{*+} \gamma$	6.0			~ 0.2
$D^0 \rightarrow \rho^0 \gamma$	0.5	-0.5	± 2	0.1 - 0.5
$D^{0} \rightarrow \omega^{0} \gamma$	0.6	-0.7	± 1.3	$\simeq 0.2$
$D^{0} \rightarrow \phi^0 \gamma$	0.7	-1.6	± 5	0.1 - 3.4
$D^+ \to K^{*+} \gamma$	0.4	-0.1	± 0.8	0.1 - 0.3
$D^0 \rightarrow K^{*0} \gamma$	0.2	-0.3	± 0.4	$\simeq 0.01$

These contributions overwhelm ("irreducibly") the short distance physics.

Dilepton Modes

(G.B., E. Golowich, J. Hewett and S. Pakvasa '01, also Fajfer, Prelovsekk and Singer '01)

$D \to X \ell^+ \ell^-$

• In addition to the photon penguin, now we also have

Then, the short distance is given by O_7 plus

$$O_9 = \frac{e^2}{16\pi^2} (\bar{u}_L \gamma_\mu c_L) (\bar{\ell} \gamma^\mu \ell) ,$$

$$O_{10} = \frac{e^2}{16\pi^2} (\bar{u}_L \gamma_\mu c_L) (\bar{\ell} \gamma^\mu \gamma_5 \ell) .$$

• Compute C_7 , C_9 and C_{10} . When QCD is added, mixing with other operators. In the SM we have

$$\mathcal{B}r_{D^+ \to X_u^+ e^+ e^-}^{(\mathrm{sd})} \simeq 2 \times 10^{-8}$$
$$\mathcal{B}r_{D^0 \to X_u^0 e^+ e^-}^{(\mathrm{sd})} \simeq 8 \times 10^{-9}$$

Long Distance contributions: Dominated by intermediate vector meson states:
 D → PV⁰ → Pℓ⁺ℓ⁻. For instance, in
 D⁺ → π⁺ℓ⁺ℓ⁻, φ dominates.

Mode	$\mathcal{B}r^{(ext{pole})}$	$\mathcal{B}r^{(ext{exp.})}$
$D^+ \to \pi^+ \phi \to \pi^+ e^+ e^-$	$1.8\cdot 10^{-6}$	$< 6.6 \cdot 10^{-5}$
$D^+ \to \pi^+ \phi \to \pi^+ \mu^+ \mu^-$	$1.5 \cdot 10^{-6}$	$< 1.8 \cdot 10^{-5}$
$D_s^+ \to \pi^+ \phi \to \pi^+ e^+ e^-$	$1.1 \cdot 10^{-5}$	
$D_s^+ \to \pi^+ \phi \to \pi^+ \mu^+ \mu^-$	$0.9\cdot 10^{-5}$	$< 4.3 \cdot 10^{-4}$

• They affect the vector couplings of leptons. => the off-resonance effects can be included as

$$C_9 \to C_9 + \frac{3\pi}{\alpha^2} \sum_i \kappa_i \frac{m_{V_i} \Gamma_{V_i \to \ell^+ \ell^-}}{m_{V_i}^2 - s - i m_{V_i} \Gamma_{V_i}} ,$$

with the κ_i 's fit to $D^+ \to \pi^+ V_i$ data.

 $Gustavo \ Burdman$

Gustavo Burdman

Rare D Decays in the MSSM

• Non-universal soft breaking terms:

$$\mathcal{L}_{\text{soft}}^{\text{n.u.}} = -Q^{i\dagger} (M_Q^2)^{ij} Q^j - D^{i\dagger} (M_D^2)^{ij} D^j$$
$$-U^{i\dagger} (M_U^2)^{ij} U^j + \cdots$$
$$+ (A_D^{ij} H^1 Q^i D^j + A_U^{ij} H^2 Q^i U^j + \cdots)$$

- Stability bounds apply to trilinear terms A^{ij} .
- Bounds on off-diagonal M_Q , etc. from FCNC.

=> bounds on

$$(\delta^{u}_{ij})_{AB} \equiv \frac{(M^{U}_{ij})^{2}_{AB}}{M^{2}_{\tilde{q}}}$$

and A, B = L, R.

Effects of squark-gluino in Wilson coefficients:

• The operators O_7 and O_9 get

$$C_{7}^{\tilde{g}} = -\frac{16}{9} \left(\frac{v}{M_{\tilde{q}}}\right)^{2} \pi \alpha_{s} \left\{ (\delta_{12}^{u})_{LL} \frac{P_{132}(u)}{4} + (\delta_{12}^{u})_{RL} P_{122}(u) \frac{M_{\tilde{g}}}{m_{c}} \right\}$$

$$C_{9}^{\tilde{g}} = -\frac{16}{27} \left(\frac{v}{M_{\tilde{q}}}\right)^{2} \pi \alpha_{s} \left(\delta_{12}^{u}\right)_{LL} P_{042}(u)$$

• C_{10} requires two mass insertions

$$C_{10}^{\tilde{g}} = -\frac{1}{9} \frac{\alpha_s}{\alpha} (\delta_{22}^u)_{RL} (\delta_{12}^u)_{LR} P_{032}(u)$$

$$u \equiv \left(\frac{M_{\tilde{g}}}{M_{\tilde{q}}}\right)^2$$

• Operator basis is extended to include:

$$O'_{7} = \frac{e}{16\pi^{2}} m_{c} (\bar{u}_{R} \sigma_{\mu\nu} c_{L}) F^{\mu\nu}$$

$$O'_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{u}_{R} \gamma_{\mu} c_{R}) (\bar{\ell} \gamma^{\mu} \ell)$$

$$O'_{10} = \frac{e^{2}}{16\pi^{2}} (\bar{u}_{R} \gamma_{\mu} c_{R}) (\bar{\ell} \gamma^{\mu} \gamma_{5} \ell)$$

• These get

$$C_{7}^{'\tilde{g}} = -\frac{16}{9} \left(\frac{v}{M_{\tilde{q}}}\right)^{2} \pi \alpha_{s} \left\{ (\delta_{12}^{u})_{RR} \frac{P_{132}(u)}{4} + (\delta_{12}^{u})_{LR} P_{122}(u) \frac{M_{\tilde{g}}}{m_{c}} \right\}$$
$$-\frac{16}{27} \left(\frac{v}{M_{\tilde{q}}}\right)^{2} \pi \alpha_{s} (\delta_{12}^{u})_{RR} P_{042}(u)$$
$$C_{10}^{'\tilde{g}} = -\frac{1}{9} \frac{\alpha_{s}}{\alpha} (\delta_{22}^{u})_{LR} (\delta_{12}^{u})_{LR} P_{032}(u)$$

$M_{\tilde{g}}$ enhancement

• In the SM $O_7 = \frac{e}{16\pi^2} m_c (\bar{u}_L \sigma_{\mu\nu} c_R) F^{\mu\nu}$ requires m_c insertion

• But here the flip is done in the gluino line

 $= C_7 \pmod{C_7}$ pick up a factor of $M_{\tilde{g}}/m_c$.

Bounds on the $(\delta^u_{ij})_{AB}$

• Best limits on $(\delta^u)_{AB}$ come from $D^0 - \overline{D}^0$ mixing (CLEO, FOCUS)

$$\frac{1}{2} \left\{ \left(\frac{\Delta m_D}{\Gamma_D^0} \right)^2 \cos \delta + \left(\frac{\Delta \Gamma_D}{2\Gamma_D^0} \right)^2 \sin \delta \right\} < 0.04\%$$

with δ relative strong phase between $D^0 \to K^- \pi^+$ and $D^0 \to K^+ \pi^-$.

• Assuming δ is negligible

$M_{\tilde{g}}^2/M_{\tilde{q}}^2$	$(\delta^u_{12})_{LL}$	$(\delta^u_{12})_{LR}$
0.3	0.03	0.04
1.0	0.06	0.02
4.0	0.14	0.02

 $\times M_{\tilde{q}}/500$ GeV.

The effects in $D \to \pi \ell^+ \ell^-$ moderately constraining

with

(I) :
$$M_{\tilde{g}} = M_{\tilde{q}} = 250 \text{ GeV}$$

(II) : $M_{\tilde{g}} = 2 M_{\tilde{q}} = 500 \text{ GeV}$
(III): $M_{\tilde{g}} = M_{\tilde{q}} = 1000 \text{ GeV}$
(IV): $M_{\tilde{g}} = (1/2) M_{\tilde{q}} = 250 \text{ GeV}.$

and we take $(\delta_{12}^{u})_{RR} = 0$ and $(\delta_{12}^{u})_{RL} = (\delta_{12}^{u})_{LR}$.

Potentially large effects in the $D \to \rho \ell^+ \ell^-$ channels

- Low $q^2 = m_{ee}^2$ enhancement due to photon propagator in C_7 term. In $D \to \pi \ell^+ \ell^-$ this is cancelled by matrix element giving $(q^2 \gamma_\mu - q_\mu \not q)$.
- $Br(D^0 \to \rho^0 e^+ e^-) \simeq 1.3 \times 10^{-5} \simeq 5$ SM. $Br^{\text{exp.}}(D^0 \to \rho^0 e^+ e^-) < 1.2 \times 10^{-4}.$

R Parity Violation in SUSY

• Large violation of R parity is possible if other symmetries invoked to avoid proton decay. RPV superpotential

$$\mathcal{W}_{R_p} = \epsilon_{ab} \tilde{\lambda}'_{ijk} L^a_i Q^b_j \bar{D}_k + \cdots$$

• In the mass eigenbasis we get

$$\mathcal{W}_{R_p} = \lambda'_{ijk} \left[N_i V_{jl} D_l - E_i U_j \right] \bar{D}_k + \cdots$$

with

$$\lambda'_{ijk} \equiv \tilde{\lambda}'_{irs} \mathcal{U}^L_{rj} \mathcal{D}^{*R}_{sk}$$

and \mathcal{U} , \mathcal{D} rotate quarks to mass basis.

The interesting part of the super-potential gives (expanded in components in the mass basis)

$$\mathcal{W}_{\lambda'} = \lambda'_{ijk} \left\{ V_{jl} [\tilde{\nu}_L^i \bar{d}_R^k d_L^l + \tilde{d}_L^l \bar{d}_R^k \nu_L^i + (\tilde{d}_R^k)^* \overline{(\nu_L^i)}^c d_L^l] \right. \\ \left. - \tilde{e}_L^i \bar{d}_R^k u_L^j - \tilde{u}_L^j \bar{d}_R^k e_L^i - (\tilde{d}_R^k)^* \overline{(e_L^i)}^c u_L^j \right\}$$

Two insertions of last term $= c \rightarrow u\ell\ell'$ transitions.

This induces

$$\delta \mathcal{H}_{\text{eff.}} = -\frac{\lambda_{i2k}' \lambda_{i1k}'}{2m_{\tilde{d}_R^k}^2} \left(\bar{u}_L \gamma_\mu c_L \right) \left(\bar{\ell}_L \gamma^\mu \ell_L \right)$$

leading to

$$\delta C_9 = -\delta C_{10} = \frac{s^2 \theta_W}{2\alpha^2} \left(\frac{M_W}{m_{\tilde{d}_R^k}}\right)^2 \, \lambda'_{i2k} \lambda'_{i1k}$$

(More) model-independent bounds give -in units of $\times (m_{\tilde{d}_R^k}/100)$ GeV-

λ'_{11k}	λ_{12k}'	λ_{21k}'	λ_{22k}'
$0.02^{\mathrm{a})}$	$0.04^{\mathrm{a})}$	$0.06^{\mathrm{b})}$	$0.21^{ m c)}$

- a) Charged current universality.
- b) $R_{\pi} = \Gamma(\pi \to e\nu) / \Gamma(\pi \to \mu\nu).$
- c) $D \to K \ell \nu$.

Gustavo Burdman

Gustavo Burdman

Forward-Backward Asymmetry in $D \rightarrow \rho \ell^+ \ell^-$

FB Asymmetry for leptons

$$A_{FB}(q^2) = \frac{\int_0^1 \frac{d^2\Gamma}{dxdq^2} dx - \int_{-1}^0 \frac{d^2\Gamma}{dxdq^2} dx}{\frac{d\Gamma}{dq^2}}$$

with $x = \cos \theta$. It's negligible in the SM! But if $C_{10} \simeq C_9$ it could be observable:

Gustavo Burdman

Decay Mode	SM	R_p	Exp. Limit.
$D^+ \rightarrow \pi^+ e^+ e^-$	2.0×10^{-6}	2.3×10^{-6}	5.2×10^{-5}
$D^0 \rightarrow \rho^0 e^+ e^-$	2.5×10^{-6}	5.1×10^{-6}	1.2×10^{-4}
$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	1.9×10^{-6}	1.5×10^{-5}	1.5×10^{-5}
$D^0 \to \rho^0 \mu^+ \mu^-$	4.5×10^{-6}	8.7×10^{-6}	2.2×10^{-5}
$D^0 \rightarrow \mu^+ \mu^-$	3.0×10^{-15}	3.5×10^{-6}	5.2×10^{-6}
$D^0 \rightarrow e^+ e^-$	few 10^{-24}	1.0×10^{-10}	6.2×10^{-6}
$D^0 \rightarrow \mu^+ e^-$	0	1.0×10^{-6}	8.1×10^{-6}
$D^+ \rightarrow \pi^+ \mu^+ e^-$	0	3.0×10^{-5}	3.4×10^{-5}
$D^0 \rightarrow \rho^0 \mu^+ e^-$	0	1.4×10^{-5}	6.6×10^{-5}

Conclusions

- Semileptonic Decays: Precision measurements of D → (π, ρ)ℓν, D → K^(*)ℓν => Tests of HQET, SU(3), Lattice calculations. Impact on B physics: V_{ub}, predictions for exclusive rare B decays (B → K^(*)ℓ⁺ℓ⁻).
- $D^0 \overline{D^0}$ Mixing: theoretical limitation, need to understand long distance constributions.
- Charm decays induced by FCNC are sensitive to short distance physics if one stays away from resonances: e.g. this is possible in $D \to \pi \ell^+ \ell^$ and $D \to \rho \ell^+ \ell^-$
- $D \to \pi \ell^+ \ell^-$ and especially $D \to \rho \ell^+ \ell^-$, are sensitive to non-universal effects in the MSSM scalar sector if sensitivities around $(10^{-6} \cdot 10^{-7})$ are achieved.
- With current sensitivity around 10⁻⁵ these modes are already constraining R-parity violating couplings.