Light Scalar Mesons Spectroscopy From Heavy Flavor Decay

Ignacio Bediaga

Centro Brasileiro de Pesquisas Físicas Rio de Janeiro, Brazil

(for the E791 Collaboration)

Flavor Physics and CP Violation, Philadelphia 2002

E791 Dalitz Plot Analyses

RESULTS FOR SCALAR STATES

 \star From $D_s^+ \to \pi^- \pi^+ \pi^+$ decays:

▷ New mass and width measurements for $f_0(980)$ and $f_0(1370)$

PRL 86, 765 (2001)

* From $D^+ \to \pi^- \pi^+ \pi^+$ decays:

 \triangleright Evidence of a low mass, large width σ

PRL 86, 770 (2001)

 \star From $D^+ \to K^- \pi^+ \pi^+$ decays :

 \triangleright Evidence of a low mass, large width κ

 $\triangleright \text{ New mass and width measurements} \\ \text{for } \overline{K_0^*(1430)}$

hep-ex/020418

The Analysis Formalism

• Each individual amplitude must satisfy Lorentz invariance and angular momentum conservation

 $\mathcal{A}_i = F_D imes F_{R_i} imes BW_i imes \mathcal{M}_i^J$

 F_D , F_{R_i} : Blatt-Weisskopf damping factors

 \mathcal{M}_i^J : Angular function

$$BW_i = rac{1}{m_{0i}^2 - m_{12}^2 - i m_{0i} \Gamma_i(m_{12})}$$

• Signal Amplitude: coherent sum of individual amplitudes

$$\mathcal{A} = a_{nr} e^{i \delta_{nr}} + {\scriptstyle\sum\limits_j a_j} e^{i \delta_j} \mathcal{A}_j$$

The Fit Procedure

- Objectives
 - Determine the contributing channels, their levels and relative phases:

 a_i and δ_i as floating parameters

We included the possibility of measuring resonance parameters

unconstrained m_0 , Γ_0

• Unbinned Maximum Likelihood Fit to the Dalitz plot distribution

Probability distribution functions for Signal and Background

 $\triangleright \text{ Minimizing } \overline{fcn = -2\log \mathcal{L}}$

Dalitz Plot Analyses

 $1170 \pm 65 \ D^+ \text{ events}$

 $848 \pm 44 \ D_s^+$ events

<u>Channels included</u> :

$$egin{aligned} & ext{non-resonant} & &
ho^0(770)\pi^+ & \ & f_0(980)\pi^+ & \ & f_2(1270)\pi^+ &
ightarrow & & \pi^-\pi^+\pi^+ & \ & f_0(1370)\pi^+ & &
ho^0(1450)\pi^+ & \ &
ho^0(1450)\pi^+ & \ \end{aligned}$$

$D_s^+ ightarrow \pi^- \pi^+ \pi^+$ Fit Approach

• Coupled channel Breit-Wigner for $f_0(980)$

$$BW_{f_0(980)} = rac{1}{m_{12}^2 - m_0^2 + i m_0 (\Gamma_K + \Gamma_\pi)}$$

$$\Gamma_K = g_K \sqrt{m_{12}^2/4 - m_K^2}$$

$$\Gamma_\pi = g_\pi \sqrt{m_{12}^2/4 - m_\pi^2}$$

Large uncertainties for the f_0 parameters $[\mathrm{PDG}(2000)]$

•
$$f_0(1370) : \ m_0 = 1200 \ {
m to} \ 1500 \ {
m MeV/c^2}, \ \Gamma_0 = 200 \ {
m to} \ 500 \ {
m MeV/c^2}$$

• $f_0(980):\ m_0=980\pm 10\ {
m MeV/c^2},\ \Gamma_0=40\ {
m to}\ 100\ {
m MeV/c^2}$

₩

Obtain f_0 parameters from the Fit

Mode	Relative Phase	Fraction(%)
$f_0(980)\pi^+$	$0^{\circ} \text{ (fixed)}$	$56.5 \pm 4.3 \pm 4.7$
non-resonant	$(181\pm94\pm51)^\circ$	$0.5\pm1.4\pm1.7$
$ ho^0(770)\pi^+$	$(109\pm24\pm5)^\circ$	$5.8\pm2.3\pm3.7$
$f_2(1270)\pi^+$	$(133\pm13\pm28)^\circ$	$19.7\pm3.3\pm0.6$
$f_0(1370)\pi^+$	$(198\pm19\pm27)^\circ$	$32.4 \pm 7.7 \pm 1.9$
$ ho^0(1450)\pi^+$	$(162\pm26\pm17)^\circ$	$4.4\pm2.1\pm0.2$

Fit Quality

 $\chi^2/{
m dof}=1.05
ightarrow CL=3\overline{5\%}$

Summary of $D_s^+ o \pi^- \pi^+ \pi^+$ results

- Dominance of the $f_0\pi^+$ channels
- $f_0(980)$ is narrow
- g_K is compatible with zero \Rightarrow small $f_0(980)$ coupling to KK

What is the origin of the low mass peak?

- Peculiar distribution of the known dipion resonances with their possibles interferences?
- New dipion resonance with mass below the $\rho(770)$?

Initial Approach

Same Channels used in $D_s^+ o \pi^- \pi^+ \pi^+$:

$$egin{aligned} & ext{non-resonant} & &
ho^0(770)\pi^+ & & \ & f_0(980)\pi^+ & & \ & f_2(1270)\pi^+ &
ightarrow & & \pi^-\pi^+\pi^+ & \ & f_0(1370)\pi^+ & &
ho^0(1450)\pi^+ & &
ho^0(1450)\pi^+ & & \ \end{aligned}$$

Mode	Relative Phase	Fraction(%)
$ ho^0(770)\pi^+$	$0^{\circ} \text{ (fixed)}$	20.8 ± 2.4
non-resonant	$(150\pm12)^\circ$	38.6 ± 9.7
$f_0(980)\pi^+$	$(152\pm16)^\circ$	7.4 ± 1.4
$f_2(1270)\pi^+$	$(103\pm16)^\circ$	6.3 ± 1.9
$f_0(1370)\pi^+$	$(143\pm10)^\circ$	10.7 ± 3.1
$ ho^0(1450)\pi^+$	$(46\pm15)^\circ$	22.6 ± 3.7

- dominant non-resonant contribution
- $\rho^0(770)\pi^+$ and $\rho^0(1450)\pi^+$ are the dominant resonant channels
- compatible with previous E687 results

Fit Quality

$$\chi^2/{
m dof}=1.5
ightarrow CL=10^{-5}$$

• This model, with the known resonances, failed to explain experimental data.

- We need a new dipion resonance with mass below the $\rho^0(770)$.
- The only available state is the long time expected particle σ .

Inclusion of a New State in the $D^+ \rightarrow \pi^- \pi^+ \pi^+$ Decay

 \star Scalar state with unconstrained mass and width

Candidate: the σ particle

Fit Results

$${
m M}_{\sigma} = 478^{+24}_{-23} \pm 17 ~~{
m MeV/c^2}$$

 $\Gamma_{\sigma} = 324^{+42}_{-40} \pm 21 ~~{
m MeV/c^2}$

Mode	Relative Phase	Fraction(%)
$\sigma\pi^+$	$(206\pm8.0\pm5)^\circ$	$46.3\pm9.0\pm2.1$
$ ho^0(770)\pi^+$	0° (fixed)	$33.6 \pm 3.2 \pm 2.2$
non-resonant	$(57\pm20\pm6)^\circ$	$7.8\pm6.0\pm2.7$
$f_0(980)\pi^+$	$(165\pm11\pm3)^\circ$	$6.2\pm1.3\pm0.4$
$f_2(1270)\pi^+$	$(57\pm8\pm3)^\circ$	$19.4\pm2.5\pm0.4$
$f_0(1370)\pi^+$	$(105\pm18\pm1)^\circ$	$2.3\pm1.5\pm0.8$
$ ho^{0}(1450)\pi^{+}$	$(319\pm39\pm11)^\circ$	$0.7\pm0.7\pm0.3$

$D^+ o \pi^- \pi^+ \pi^+$ Results

Fit Quality with $\sigma\pi$ amplitude

Summary of $D^+ \to \pi^- \pi^+ \pi^+$ Analysis

- Model without $\sigma \pi$: high NR, bad fit quality
- σ appears with low mass, large width
- $\sigma\pi$ is the dominant channel; small NR

 \Rightarrow <u>VERY GOOD DESCRIPTION AT LOW $\pi\pi$ MASS</u>

The $D^+ \to K^- \pi^+ \pi^+$ Decay

15090 events inside the window

 D^+ –

 $ar{K}^*(890)\pi^+ \ ar{K}^*_0(1430)\pi^+ \ ar{K}^*_2(1430)\pi^+ \ ar{K}^*_2(1430)\pi^+ \ ar{K}^*(1680)\pi^+$

First Approach

Conventional Model With All Known $K\pi$ Resonances

• fixed masses and widths for the resonances [PDG]

Mode	Relative Phase	Fraction $(\%)$
Non-resonant	0° (fixed)	90.9 ± 2.6
$ar{K}^*(890)\pi^+$	$(54\pm2)^\circ$	13.8 ± 0.5
$ar{K}_{0}^{*}(1430)\pi^{+}$	$(54\pm2)^\circ$	30.6 ± 1.6
$ar{K}_2^*(1430)\pi^+$	$(33\pm8)^{\circ}$	0.4 ± 0.1
$ar{K}^*(1680)\pi^+$	$(66 \pm 3)^{\circ}$	3.2 ± 0.3

<u>Results</u>

- very large NR contribution
 ⇒ unusual in D decays
- sum of the fractions $\sim 140\%$
- agreement with E691 and E687
- bad fit quality:

 $\chi^2/{
m dof}=2.7
ightarrow CL=10^{-11}$

Improving the Model

***** Inclusion of an extra SCALAR STATE: unconstrained mass and width

\star Float mass and width also for $K_0^*(1430)$

***** Besides:

⇒ Include form-factors to account for finite size of the decaying mesons in scalar transitions using Törnqvist gaussian format

 \Rightarrow Radii of D and $K\pi$ resonances as two free parameters

Fit including $\kappa \pi$ amplitude

Results:

• Scalar κ with low mass and large width

$$M_\kappa = 797 \pm 19 \pm 43 ~\rm{MeV/c^2}$$

 $\Gamma_{\kappa} = 410 \pm 43 \pm 87 \, \, \mathrm{MeV/c^2}$

• New measurements for $K_0^*(1430)$ mass and width

$$M_{K_0^*(1430)} = 1459 \pm 7 \pm 5 MeV/c^2$$

 $\Gamma_{\rm K_0^*(1430)} = 175 \pm 12 \pm 12 ~\rm{MeV/c^2}$

PDG(2000)

 ${
m M}_{
m K_0^*(1430)} = 1412 \pm 6 \,\, {
m MeV/c^2}$ $\Gamma_{
m K_0^*(1430)} = 294 \pm 23 \,\, {
m MeV/c^2}$

Mode	Relative Phase	Fraction (%)
Non-resonant	$(-11 \pm 14 \pm 8)^{\circ}$	$13.0\pm5.8\pm4.4$
$\kappa\pi^+$	$(187\pm8\pm18)^\circ$	$47.8 \pm 12.1 \pm 5.3$
$ar{K}^*(890)\pi^+$	$0^{\circ} \ ({ m fixed})$	$12.3\pm1.0\pm0.9$
$ar{K}_0^*(1430)\pi^+$	$(48\pm7\pm10)^\circ$	$12.5\pm1.4\pm0.5$
$ar{K}_2^*(1430)\pi^+$	$(-54\pm 8\pm 7)^\circ$	$0.5\pm0.1\pm0.2$
$ar{K}^*(1680)\pi^+$	$(28\pm13\pm15)^\circ$	$2.5\pm0.7\pm0.2$

Fit Quality with $\kappa \pi$ amplitude

 $\chi^2/{
m dof}=0.73
ightarrow CL=95\%$

Other Studies

Checking whether other models could explain the data in a similar manner:

- Toy Model: "Breit-Wigner" with no phase variation SQRT($|BW|^2$)
 - ▶ similar mass and width
 - ▷ unphysical fractions for κ (283 ± 96%) and NR $(127 \pm 79\%)$
 - ▶ worse fit quality
- Vector and Tensor States instead of scalar
- Studies of the NR amplitude in the absence of the κ

Summary of $D^+ \to K^- \pi^+ \pi^+$ Dalitz Plot Analysis

• <u>Fit with known resonances</u>:

* Dominant NR contribution (over 90%), followed by the scalar $\bar{K}_0^*(1430)\pi^+$

***** Bad fit quality, especially at low $K\pi$ mass

• <u>Inclusion of a new scalar state</u>:

- \star Evidence for a light and broad κ resonance
- ***** New measurement for $K_0^*(1430)$ parameters
- ★ The scalars appear as the main contributing states

 \Rightarrow <u>Very good description of data!</u>

Conclusions

Dalitz Plot Analyses from E791 data provided:

- Strong evidence for the existence of σ
- Strong evidence for the existence of κ
- New measurements for $f_0(980), f_0(1370)$ parameters
- New measurement for $K_0^*(1430)$ parameters

 \downarrow

CHARM DECAYS AS A CLEAN LABORATORY FOR LIGHT MESON PHYSICS

 \Rightarrow large and clean samples of D decays are available

 \Rightarrow great variety of 3 and 4-body channels to study