Rare Kaon Decays: Progress and Prospects

Douglas Bryman University of British Columbia

Overview of Rare Kaon Decays

State of the art: single event sensitivity, 10⁻¹²

Exotic Searches	$\begin{array}{cccc} K_L^0 \longrightarrow \mu \ e \ LFV \\ K^+ \longrightarrow \pi^+ \ f \ "Axions". \end{array}$	<4.7 10 ⁻¹²
SM Parameters	$K_L^0 \longrightarrow \mu^+ \mu^- V_{td} $	10 ⁻⁸ : 6200 events
ana BSM Physics	$K^{+} \longrightarrow \pi^{+} \nu \nu V_{td} $ $K^{0}_{L} \longrightarrow \pi^{0} e^{+} e^{-} CP \text{ violation}$ $K^{0}_{L} \longrightarrow \pi^{0} \nu \overline{\nu} CP \text{ violation}$	10 ⁻¹⁰ : 2 events
Low Energy QCD Chiral Perturbation Theory	$egin{aligned} &K^0_L o e^+ e^- \ &K^0_L o \gamma l^+ \ l^- \ &l=e,\mu \ &K^+ o \pi^+ \ l^+ \ l^- \ & Radiative \ decays \end{aligned}$	10 ⁻¹¹ : 4 events

Standard Model CP Violation

Four super-clean processes will challenge the Standard Model:

$\mathrm{K}^{+} \rightarrow \pi^{+} \nu \overline{\nu}$	$ V_{ts}^*V_{td} $	E 949, C K M
$\mathrm{K}_{L}^{0} \rightarrow \pi^{0} \nu \overline{\nu}$	$\mathrm{Im}(V_{ts}^{*}V_{td})$	KOPIO
$\mathbf{B}_{d} \rightarrow \boldsymbol{\psi} \mathbf{K}_{s}$	$\sin(2\beta)$	BABAR, BELLE, CDF, D0
$\frac{x_s}{x_d}$	$rac{V_{ts}}{V_{td}}$	CDF , D0 , LHCB, BTEV

 $\underline{K} \rightarrow \pi \nu \overline{\nu}$ in the Standard Model

	$K^+ \to \pi^+ \nu \bar{\nu}$	$K^0_L o \pi^0 u ar u$
Top Quark Dependence	$ \lambda_t = V_{ts}^* V_{td} $	$Im(\lambda_t) {=} Im(V_{ts}^* V_{td})$
SM BR (10^{-11})	7.2 ± 2.1	2.6 ± 1.2
Est. Theory Uncertainty	7% (charm)	2%

- Negligible long distance effects (10^{-13}) .
- Hadronic matrix elements from isospin analog $K^+ \to \pi^0 e^+ \nu_e.$

Standard Model (*Buras*): $\operatorname{Im} \lambda_{t} = \operatorname{Im} V_{ts}^{*} V_{td} = \eta A^{2} \lambda^{5}$ $R(K_{L}^{0} \rightarrow \pi^{0} V \overline{V}) = 1.8 x 10^{-10} \left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2}$ $\sim 4.1 x 10^{-10} A^{4} \eta^{2} = 2.6 \pm 1.2 x 10^{-11}$ $R(K^{+} \rightarrow \pi^{+} V \overline{V}) \sim 1.0 x 10^{-10} A^{4} \left[\eta^{2} + (\rho_{0} - \rho)^{2} \right] = 7.2 \pm 2.1 x 10^{-11}$

$\mathbf{B} \rightarrow \psi K_{S}$ and $\mathbf{K} \rightarrow \pi \nu \nu$

Differences sensitive to new physics – virtually free of uncertainties.

(Nir and Worrah, Phys. Lett. B319 1998)

Comparison of Precision from Future K and B Measurements

 $\sigma(|V_{cb}|) = \pm 0.002(0.001)$

	$K \rightarrow \pi \nu \overline{\nu}$	B-Factory Era	LHCB/BTEV
$\sigma(V_{td})$	±10%(9%)	±5.5%(3.5%)	±5%(2.5%)
$\sigma(\overline{ ho})$	±0.16(0.12)	±0.03	±0.01
$\sigma(\overline{\eta})$	±0.04(0.03)	±0.04	±0.01
$\sigma(\sin 2\beta)$	±0.05	±0.06	±0.02
$\sigma(\operatorname{Im} \lambda_t)$	±5%	±14%(11%)	±10%(6%)

$\frac{\text{BNL E787(E949)}}{\text{Measurement of } K^+ \to \pi^+ \nu \nu}$

Range Stack Target

Special Features of Measuring $K^+ \rightarrow \pi^+ \nu \nu$

Background processes may exceed signal by >10¹⁰

• Determine everything possible about the K⁺ and π^+

- Eliminate events with extra charged particles or *photons* $* \pi^0$ inefficiency < 10⁻⁶
- Suppress backgrounds well below the expected signal (S/N~10)
- * Predict backgrounds from data: dual independent cuts
- * Use "Blind analysis" techniques
- * Test predictions with "outside-the-box" measurements
- Evaluate candidate events with S/N function

Background Processes: Range vs. Momentum

 $\mathbf{K}^+ \to \pi^+ \pi^0$ Background SuppressionDual cuts: γ Veto and Kinematics (P,R,E...) γ Veto Reversed γ γ Veto AppliedRange vs. EnergyMomentum

Check for correlations

E787 Background Estimates

Source	Events		
$K^+ \to \mu^+ \nu$	0.04 ± 0.01		
$K^+ \rightarrow \pi^+ \pi^0$	$0.05 \pm _{0.03}^{0.04}$		
Beam π	0.02 ± 0.02		
Charge exch.	0.03 ± 0.01		
Total	$0.15 \pm _{0.04}^{0.05}$		

 $N_{K^+} = 5.9 \ x \ 10^{12}$ Efficiency $\varepsilon = 2 \ x \ 10^{-3}$

E787 2002: $T_{WO} K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Candidates

 $N_{K^+} = 5.9 \ x \ 10^{12}$ Efficiency $\varepsilon = 2 \ x \ 10^{-3}$ Estimated Background: 0.15 ± 0.05 events

Branching Ratio B($K^+ \to \pi^+ \nu \bar{\nu}) = 1.57 \pm_{0.82}^{1.75} x \, 10^{-10}$

Consistent with SM: $(0.72 \pm 0.21) \times 10^{-10}$ Estimated probability of being due to background only : 0.02%

Limits on $\lambda_t \equiv V_{ts}^* V_{td}$ (Independent of B system, $\mathcal{E}_K, \mathcal{E}'$) 2.9 $x \, 10^{-4} < |\lambda_t| < 1.2 \ x \ 10^{-4}$ (68% *C.L.*) -0.88 $x \, 10^{-3} < \operatorname{Re}(\lambda_t) < 1.2 \ x \ 10^{-3}$ (68% *C.L.*) Im $(\lambda_t) < 1.1 \ x \ 10^{-3}$ (90% *C.L.*)

D'Ambrosio and Isidori, 2002 hep-ph/0112135

Impact of E787 and E949 on Flavor Physics

Figure 2: Allowed region in the $\bar{\rho} - \bar{\eta}$ plane using only theoretically *clean* observables: 90% C.L. interval imposed by $\sin(2\beta)$ (dashed); 90% C.L. limit from the upper bound on $\Delta M_{B_d}/\Delta M_{B_s}$ (full); 90% C.L. limit from the lower bound on $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ (dotted). For comparison the 68% and 90% C.L. ellipses from the global fit in Fig. 1 are also shown.

Figure 3: Allowed region in the $\bar{\rho} - \bar{\eta}$ plane with the inclusion of $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ and without $B_d - \bar{B}_d$ data. The two external contours denotes 68% and 90% confidence intervals; the inner (dotted) one is the 68% confidence interval under the assumption that experimental error in (1) is reduced by a factor two.

E787 and other clean observables (90% CL)

Possible E949 result favoring Non-SM

$K^+ \rightarrow \pi^+ \nu \nu$ Future Prospects

BNL E949 (2002-)

Upgrade of E787 detector Improved photon vetos – truly hermetic coverage Access to the low momentum region Sensitivity goal: <10⁻¹¹

Order of magnitude improvement beyond E787

Factor 5-10 below the SM prediction

 μ^+ Momentum from $K^+ \rightarrow \mu^+ \nu$

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

FNAL *CKM* (~2007-)

New *in-flight* technique - RF-separated K beam Particle ID : RICH Sensitivity goal: <10⁻¹²

CKM Goal: 100 events with S/N>7

	Effective BR
Background source	$(\times 10^{-12})$
$K^+ \to \mu^+ \nu_\mu$	< 0.04
$K^+ \to \pi^+ \pi^0$	3.7
$K^+ \to \mu^+ \nu_m u \gamma$	< 0.09
$K^+A \to K_L X, K_L \to \pi^+ e^- \overline{\nu}_e$	< 0.14
$K^+A ightarrow \pi^+X$ in trackers	< 4.0
$K^+A ightarrow \pi^+X$ in residual gas	< 2.1
Accidentals (2 K^+ decays	0.51
Total	< 10.6

$K^+ \rightarrow \pi^+ x$ and Global Family Symmetry

[Wilczek (1982), Gelmini et al. (1983), Feng et al. (1998)]

Motivation: Explain the replication of families Postulate: Global Family Symmetry spontaneously broken at large mass scale (F) \rightarrow Goldstone Boson "FAMILON (f)". $L_{eff} = \frac{1}{F} J_{\mu} \delta_{\mu} f$:: $\mu \rightarrow e + f$ and $s \rightarrow d + f$

	GFS	Experiment	F Limit
			(GeV)
$B(K^+ \to \pi^+ f)$	$\frac{1.310^{14}GeV^2}{F^2}$	$< 5.910^{-11}$	$> 210^{12}$
	-	(E787)	
		(2002)	
$B(\mu ightarrow ef)$	$\frac{2.510^{14}GeV^2}{F^2}$	$< 2.610^{-6}$	$> 10^{10}$
	-	(Jodidio)	
B(au o ef)	$\frac{2.510^{14}GeV^2}{F^2}$	$< 2.610^{-3}$	$> 310^{6}$
	-	(ARGUS)	
COSMOLOGY			$10^9 < F < \!\! 10^{12}$

Limits on $K \rightarrow \pi X$

Probing CP Violation with Rare Kaon Decays

$$K_L^0 \longrightarrow \pi^0 e^+ e^-$$

Difficult to get at *short distance* physics due to long distance strong interaction effects and other complications. **Progress is being made.**

$$K_L^0 \to \pi^0 \nu \overline{\nu}$$

The Golden Mode! – but can it be measured?

SM Prediction: $R(K_L^0 \to \pi^0 v \bar{v}) \sim 4.1 \times 10^{-10} A^4 \eta^2 = 2.6 \pm 1.2 \times 10^{-11}$

 $K_{I}^{0} \longrightarrow \pi^{0} e^{+} e^{-}$

 $B_{\rm exp}(K_L^0 \to \pi^0 e^+ e^-) < 5.1 x 10^{-10} (FNAL - E799\ 2001)$

- CP conserving part two photon intermediate state . *Can't be calculated reliably now.* Need $K_L^0 \rightarrow \pi^0 \gamma \gamma$
- CP violating parts single photon intermediate states
 Oirect CP violation -- the goal !

Same diagrams as $K \rightarrow \pi \nu \nu$:

 $R(K_L^0 \to \pi^0 e^+ e^-)_{CPV-dir} \sim 6.7 \, x 10^{-11} A^4 \eta^2 = 4 \, x 10^{-12}$ $\odot \text{Mixing} - \text{Need } K_S^0 \to \pi^0 e^+ e^-$

$$\mathbf{R}(K_L^0 \to \pi^0 e^+ e^-)_{CPV-Mix} \sim \left| \mathcal{E} \right|^2 \frac{\tau_L}{\tau_S} \mathbf{R}(K_S^0 \to \pi^0 e^+ e^-)$$

• Background : $K_L^0 \rightarrow \gamma \gamma e^+ e^-$

$$K_L^0 \longrightarrow \pi^0 e^+ e^-$$

• CP conserving part: two-photon intermediate state . NA48 *Preliminary* results (2002):

 $B(K_{L}^{0} \to \pi^{0} \gamma \gamma) = (1.36 \pm 0.03_{stat} \pm 0.03_{syst} \pm 0.03_{norm}) \ x \ 10^{-6}$

$$K_L^0 \longrightarrow \pi^0 e^+ e^-$$

• CP violating part due to mixing:

 $R(K_{s}^{0} \to \pi^{0}e^{+}e^{-})_{CPV-Mix}^{CHPT} \sim 5.2(a_{s})^{2} x 10^{-9}, a_{s} \sim 1$ NA48 (2001): B(K_{s}^{0} \to \pi^{0}e^{+}e^{-}) <1.4 x 10^{-7} Use CHPT, $a_{s} <5.2$: B(K_{L}^{0} \to \pi^{0}e^{+}e^{-})_{CPV-Mix} <4.4 x 10^{-10} • Background : K_{L}^{0} \to \gamma\gamma e^{+}e^{-}

$$B(K_{L}^{0} \rightarrow \pi^{0}e^{+}e^{-})_{K_{L}^{0} \rightarrow \gamma \gamma e^{+}e^{-}} \sim 3 x \ 10^{-10} \ \text{[Greenlee]}$$

NA48/1 Rare K Decay Studies (2002-)

Upgraded detectors and beamline.
100 x intensity
Improved K_S target
S.E.S~ 10⁻¹⁰

NA48/1 - Motivation

- $K_s \rightarrow \pi^0 ll$, late,
- Search for CPV indexcays
 - $K_{s} \rightarrow 3\pi^{0}, \quad \underline{K} \rightarrow \pi^{+}\pi^{-}\pi^{0}$
- Test of Chiral Perturbation Theory $- \kappa_s \rightarrow \gamma\gamma, \kappa_s \rightarrow \pi^0 \gamma\gamma, \kappa_s \rightarrow \pi^0 \pi^0 \gamma\gamma$
- Study & Dalitz and semeiptonic decays
- Semi-leptonic and radiative neutral hyperon
 - $\quad \Xi^{0} \rightarrow \Sigma^{+} e^{-} \nu, \Xi^{0} \rightarrow \Sigma^{+} \mu^{-} \nu, \Xi^{0} \rightarrow \Sigma^{0} \gamma, \Xi^{0} \rightarrow \Lambda \gamma$

R. Sacco (2002)

Experiments seeking $K_L^0 \rightarrow \pi^0 \nu \overline{\nu}$

• Limit based on isospin and $K^+ \rightarrow \pi^+ \nu \overline{\nu} : <1.7 \times 10^{-9} \bullet_{[Grossman, Nir]}$

• KTEV (FNAL) result:

$$\mathbf{R}(K_L^0 \to \pi^0 \nu \overline{\nu}) \equiv \frac{\Gamma(K_L^0 \to \pi^0 \nu \nu)}{\Gamma(K_L^0 \to all)} < 5.9 \, x \, 10^{-7}$$

• KEK E391a *goal* : s.e.s. $10^{-10} - 10^{-9}$

• KOPIO (BNL) *goal* : s.e.s. $<10^{-12}$, >50 events

Primary Background: $K_L^0 \rightarrow \pi^0 \pi^0 R(K_L^0 \rightarrow \pi^0 \pi^0) \sim 10^{-3}$

KEK PS

Features: * Pencil Beam * High acceptance * High P_T selection * Pilot Project for JHF

* Test reliance on extreme photon veto efficiency

KEK Neutral Beam Measurements

H. Watanabe (2002)

KOPIO: Measurement of $K_L^0 \to \pi^0 \nu \bar{\nu}$

CONCEPTS

- Measure as much as possible: Energy, position and *ANGLE* of each photon.
- Work in the C.M. system : Use TOF to get the K_L^0 momentum.
- Maximize Photon Veto Efficiency
- Maximize Intensity of Microbunched Beam

Parameter	Minimal	Expected
	Requirement	Performance
E_{γ} resolution	$3.5\%/\sqrt{E}$	$2.7\%/\sqrt{E}$
$ heta_\gamma$ resolution (250MeV)	$(25-30)\mathrm{mr}$	23 mr
t_γ resolution	$100 ps/\sqrt{E}$	$50 ps/\sqrt{E}$
x_{γ}, y_{γ} resolution(250MeV)	10mm	< 1mm
μ -bunch width	300 ps	200 ps
γ -veto inefficiency	$\overline{\epsilon}_{E787}$	$0.3\overline{\epsilon}_{E787}$

Kinematic suppression of backgrounds Goal: >50 Events with S/N>2

Summary and Outlook

- K⁺ → π⁺νν : 2 events seen B(K⁺ → π⁺νν) = 1.57 ±^{1.75}_{0.82} x 10⁻¹⁰ (E787) *Prospects*: E949 (10 events) and CKM (100 events)
 K⁰_L → π⁰νν Prospects : E391a (s.e.s. <10⁻⁹) and KOPIO (50 events). JHF?
- Exotics: New results on $K_L^0 \to \pi^0 x, K_L^0 \to \pi^0 \gamma$ (E787) Soon, $K \to \pi \mu e$, others (KTEV/E799, BNL E865)

Summary and Outlook

• Radiative and semi-rare decays:

New results on $K_{I}^{0} \rightarrow \pi^{0} \gamma \gamma, K_{S}^{0} \rightarrow \pi^{0} e^{+} e^{-}$, $\mathbf{K}^{0}_{s} \rightarrow \pi^{0} \gamma \gamma \text{ (NA48), } \mathbf{K}^{0}_{I} \rightarrow \pi^{0} e^{+} e^{-} \text{(E799),}$ $K^+ \rightarrow \pi^+ \mu \mu$ (HYPER-CP), $K_s^0 \rightarrow \pi^{\pm} e^{\mp} \nu$ (KLOE) Soon, others (KTEV/E799, BNL E865, NA48, KLOE) New Experiments: NA48/1: Rare decays of K's and hyperons, CPV in K_s decays KLOE : $\varepsilon / \varepsilon$, CPT, rare decays, test of CHPT