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Farewell to ACPMAPS

In 1987 Fermilab announced that it would build a supercomputer for lattice gauge
theory, with the aim to carry out calculations of real interest to particle physics.

In 1991, it was upgraded to become, by one measure, the fastest computer in the
world (that wasn’t a secret). It had 600 processors—the Intel i860—each with the (for
those days) mind-blowing clock speed of 40 MHz.

ACPMAPS

decommissioned

May 15, 2002.

αs from c̄c

mq, ms, mc

fBq, fDq

B! πlν
methods

Today’s result was the last major project on ACPMAPS.
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B! D�lν and Vcb

The decay rate for B! D�lν is

dΓ
dw

=
G2

F
4π3(w

2

�1)1=2m3
D�(mB�mD�)2G(w)jVcbj

2

jFB!D�(w)j2;

where w = v � v0 and G(1) = 1. At zero recoil (w = 1) the HQS is more powerful—
FB!D�(1) is close to 1—so this point is preferred.

So, jVcbj is determined by extrapolating data for

1
(w2�1)1=2

dΓ
dw

to w! 1. Then FB!D�(1) is taken from “theory”.

To date models [Neubert] or a rigorous inequality + judgment [Bigi, Uraltsev, et al.]
have been used to estimate FB!D�(1).
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The Problem at Hand

The “form factor” FB!D�(w) is a linear combination of several form factors of the
matrix elements hD�jV µjBi and hD�jAµjBi.

At zero recoil all form factors but hA1 are suppressed, so

FB!D�(1) = hA1(1) = hD�(v)jAµ

jB(v)i;

which should be “straightforward” to calculate in lattice QCD.

But a brute force calculation of this matrix element of hD�jAµjBi would not be inter-
esting: similar matrix elements like hπjV µjBi and h0jAµjBi have 15–20% errors (in
the quenched approximation).

We have to involve heavy-quark symmetry from the outset: if we can focus on
F �1, we have a chance of success, because a 20% error on F �1 is interesting:
0:2�0:1= 0:02. Hashimoto, ASK, Mackenzie, Ryan, Simone, hep-ph/0110253.
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The Obstacles

There are three specific obstacles to overcome:

� statistical uncertainties

� normalization uncertainties: Aµ
lat

:
= Z�1

A Aµ

� how treat heavy quarks: mba 6� 1

The first two need computational insight;
[Hashimoto et al., hep-ph/9906376, hep-ph/0110253]

the last two theoretical insight.
[El-Khadra, ASK, Mackenzie, hep-lat/9604004; ASK, hep-lat/0002008]

[see also Harada et al., hep-lat/0112044, hep-lat/0112045]
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Anatomy of hA1(1)

At zero recoil heavy-quark symmetry implies

hA1(1) = ηA

h

1Isgur�Wise+0Luke+δ1=m2+δ1=m3

i

where ηA is a short-distance coefficient of the HQET, and the δ1=mn are (principally)
long-distance matrix elements.

The structure of the 1=mn
Q corrections is

δ1=m2 = �

`V
(2mc)2

+

2`A

(2mc)(2mb)
�

`P

(2mb)

2

δ1=m3 = �

`
(3)

V

(2mc)3

+
`
(3)

A Σ+ `
(3)

D ∆
(2mc)(2mb)
�

`
(3)

P

(2mb)

3

where Σ = 1=(2mc)+1=(2mb) & ∆ = 1=(2mc)�1=(2mb).
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5



Calculating ηA and the `s

ηA is short distance, so perturbation theory should be adequate.

To calculate the `s, one must make sure that their renormalization scheme ends up

the same as the one used for ηA.

Lattice gauge theory with Wilson fermions has the same Isgur-Wise symmetries as

continuum QCD, for all mQa. It therefore admits a description with HQET, provided

mQ� Λ. [hep-lat/9604004, hep-lat/0002008, hep-lat/0112044, hep-lat/0112045]

So, one needs some quantities with small statistical and normalization errors, and

whose HQE contains the `s. Then, calculate the short-distance part (mQa enters

here) in perturbation theory, extract the `s from a fit, and reconstitute hA1(1).

FB!D�(1) from Lattice QCD May bring sorrow Andreas S. Kronfeld
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Suitable Observables

From hep-ph/9906376 (the B! D form factor) we know that certain ratios have the
desired low level of uncertainty

hDjc̄γ4bjBihBjb̄γ4cjDi

hDjc̄γ4cjDihBjb̄γ4bjBi
=

n

ηlat
V

h

1� `P∆2

� `
(3)

P ∆2Σ

io2

hD�jc̄γ4bjB�ihB�jb̄γ4cjD�i

hD�jc̄γ4cjD�ihB�j̄bγ4bjB�i
=

n

ηlat
V

h

1� `V∆2

� `
(3)

V ∆2Σ

io2

hD�jc̄γ jγ5bjBihB�jb̄γ jγ5cjDi

hD�jc̄γ jγ5cjDihB�jb̄γ jγ5bjBi
=

n

η̌lat
A

h

1� `A∆2

� `
(3)

A ∆2Σ

io2

For lattice gauge theory, these follow from hep-lat/0002008, leaning heavily on Falk
and Neubert [PRD47 (1993) 2965].

ηlats computed to one loop + BLM [Harada, Hashimoto, ASK, Onogi, hep-lat/0112045].

FB!D�(1) from Lattice QCD So, tonight, let’s Andreas S. Kronfeld
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The Debt Owed to Luke’s Theorem

We need the 1=m2
Q corrections to the double ratios, but the lattice action and currents

do not normalize all such terms correctly. HQET reveals several sources of such

contributions [Falk&Neubert; Mannel; ASK]:

double insertions of L(1)
HQET are correctly normalized (to order αs)

single insertions of L(1)

HQET into matrix elements of j

(1)

HQET
vanish at zero recoil by a generalization of Luke’s theorem

single insertions of L(2)

HQET vanish by Luke’s (or Ademollo-Gatto) theorem

matrix elements of j

(2)

HQET are essential, but double ratios help

FB!D�(1) from Lattice QCD All be gay! Andreas S. Kronfeld
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Matrix elements of j

(2)

HQET enter the double ratios in the following way:

[1�λ(Xb=m2
b�1=mcmb+Xc=m2

c)]

2
[1�λ(2Xc�1)=m2

c][1�λ(2Xb�1)=m2
b]
= 1�λ

�

1
mc

�

1
mb

�2

;

where λ is proportional to λ1 or λ2, and XQ=m2
Q indicates incorrect normalization.

The other terms are “correctly normalized”—in practice, only at the tree level.

The correct normalization of 1=mcmb is built into the current we used.

The cancellation of the others is an essential feature of the double ratios.

The double ratios do suffer from uncertainties of order αs(Λ̄=mQ)

2. These, and other

matching uncertainties, of order α2
s and (Λ̄=mQ)

3, are put into the error budget.

FB!D�(1) from Lattice QCD Tell the story Andreas S. Kronfeld
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Error Budget

uncertainty hA1 1�hA1
(%)

statistics and fitting +0:0238 �0:0173 +27 �20
adjusting mc and mb +0:0066 �0:0068 + 8 � 8
α2

s �0:0082 � 9
αs(Λ̄=2mQ)

2 �0:0114 �13

(Λ̄)3=(2mQ)

3 �0:0017 � 2
a dependence +0:0032 �0:0141 + 4 �16
chiral (mq) +0:0000 �0:0163 + 0 �19
quenching +0:0061 �0:0143 + 7 �16
total systematic +0:0171 �0:0302 +20 �35
total (stat � syst) +0:0293 �0:0349 +34 �40

The row labeled “total systematic” does not include uncertainty from fitting, which is lumped with the statistical error.
The statistical error is that after chiral extrapolation.

FB!D�(1) from Lattice QCD Of glory Andreas S. Kronfeld
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Fitting

0 1 2 3
1/am

2c
 + 1/am

2b
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h
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Here we see an example of the fit to the

heavy-quark masses.

As expected, `V is the largest effect. In-

cluding `
(3)

V improves the statistical error.

Chiral (mq)

0 0.04 0.08 0.12 0.16

(mπa)
2

0.84

0.88

0.92

0.96

1.00

h A
1(1

)

In addition to a linear dependence on m2
π,

there should be a pion loop contribution.

The former increases the statistical error;

the omission of the latter is considered to

be a systematic error.

FB!D�(1) from Lattice QCD Of Penn-syl-van-i-a Andreas S. Kronfeld
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Result and Comparison

After putting everything back together again, we find [hep-ph/0110253]

FB!D�(1) = 0:913 +0:024

�0:017 �0:016 +0:003

�0:014

+0:000

�0:016

+0:006

�0:014
stat match a mq quench

0.85 0.90 0.95

h
A1

(1)

quark model

sum rule

lattice QCD

The defects (as I see them) are as follows:

The quark model omits some dynamics (more than

quenching). Not clear that QM gives HQET mx element

in MS scheme.

Sum rule has incalculable contribution from excitations

with (M�mD�)2 < µ2.

Present lattice result has quenched approximation (but in

error budget).

FB!D�(1) from Lattice QCD Drink a highball Andreas S. Kronfeld
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Flat or Gaussian?

If you are interested in a CKM fit, you

may want an idea of what’s likely.

The statistical part is straightforward and

close to Gaussian.

The systematics entail work and insight,

but they are not guesses.

The distribution is not flat: 0.90–0.91 is

most likely; there must be a tail.

P(x) = Nx7e�7x; x=

1�F (1)

0:087
captures these features. In the future we

could reducing the uncertainty by �3.

0.80 0.85 0.90 0.95 1.00

F(1)

w
he

re
 it

 is

now
future
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Future Computing

For B physics it is important to remove the quenched approximation (more so than
to reduce the lattice spacing much further). To do so, we need more computing.
It sounds expensive, but it isn’t.

Fermilab Theory Group & Computing Division,

the MILC Collaboration, and Cornell are building

a cluster of PCs. Supported by SciDAC.

80 nodes at left, with Myrinet switch

Scale to hundreds, then to thousands.

Replace 1=3 yearly.

Similar ideas at JLab/MIT, Wuppertal,. . . .

http://theory.fnal.gov/pcqcd/

FB!D�(1) from Lattice QCD Here’s a toast, to dear old Penn Andreas S. Kronfeld
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Scheme Dependence

If HQET is renormalized with an explicit subtraction point

ηlat
A (c) = ηlat

A (0)+cαsµ
2

�

∆2+

8=3

(2mc)(2mb)
�

ηlat
V (c) = ηlat

V (0)+cαsµ
2∆2

η̌lat
A (c) = η̌lat

A (0)�cαsµ
2∆2=3

where, e.g., c= 4=3π (BSUV) . With ηlat
V (c) and η̌lat

A (c) the fit parameters change:
`V(c) = `V(0)+cαsµ

2

`A(c) = `A(0)�cαsµ
2=3

`P(c) = `P(0)+cαsµ
2

When reconstituting hA1(1) from ηA(c) and `V;A;P(c), the cαsµ2 terms cancel.
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