$B \rightarrow charmonium$ - Mini Summary

F. Fang University of Hawaii

Flavor Physics & CP Violation Philadelphia, May16-18, 2002

Outline

Introduction

- Experimental results
 - non-factorizable modes
 - ${\color{red} \twoheadrightarrow} B^+ \to \chi_{c0} \, K^+$
 - ${\color{red} \twoheadrightarrow} B \to \chi_{c2} \, X$
 - other exclusive modes
 - $\textbf{\rightarrow}B \rightarrow J\!/\psi\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}, \ J\!/\psi K^{(*)}, \ \eta_c \ (1S) \ K^{(*)}, \ \ldots$
 - first observation of exclusive $\eta_c(2S)$ meson $\rightarrow B \rightarrow \eta_c(2S) K$

Summary

 $B_{CP} \rightarrow J/\psi K_{S}, \psi(2S)K_{S}, \chi_{c1}K_{S}, \eta_{c}K_{S}, J/\psi K_{L} \text{ and } J/\psi K^{*0} (\rightarrow K_{S}\pi^{0})$

are used for sin2 ϕ_1 measurements. Other CP eigenstates may be useful for the CP measurements, e.g. B $\rightarrow J/\psi \rho^0$.

- Provide tests to theoretical assumptions, e.g.
 - In the factorization limit, $B \rightarrow \chi_{c0} K$ and $\chi_{c2} X$ are not allowed

${\sf B}^0 o J/\psi \ \pi^+ \ \pi^-$

hep-ex/0203034

 $B(B \rightarrow J/\psi \pi^+ \pi^-) = (5.0 \pm 0.7 \pm 0.6) \times 10^{-5}$

	Br(B ⁰ \rightarrow J/ ψ K ^{*0}) (×10 ⁻³)	Br(B ⁺ \rightarrow J/ ψ K ^{*+}) (\times 10 ⁻³)
CLEO	${\bf 1.32 \pm 0.15 \pm 0.17}$	$1.41 \pm 0.20 \pm 0.24$
BABAR	${\bf 1.24 \pm 0.05 \pm 0.09}$	$1.37 \pm 0.09 \pm 0.11$
Belle	$1.29 \pm 0.05 \pm 0.13$	${\bf 1.28 \pm 0.07 \pm 0.14}$

 $B \rightarrow J/\psi K^*(892)$ angular analysis

Belle (to be published in PLB)

CP even component dominates

A shift from π for arg(A_{II}) but not significant

	A ₀ ²	$ \mathbf{A}_{\perp} ^2$	arg(A _{ll}) (rad)	arg(A $_{\perp}$) (rad)
CLEO	$0.52 \pm \ 0.07 \pm 0.04$	$0.16 \pm 0.08 \pm 0.04$	$3.00 \pm 0.37 \pm 0.04$	$-0.11 \pm 0.46 \pm 0.03$
CDF	$0.59 \pm \ 0.06 \pm 0.01$	$0.13 \begin{array}{c} ^{+}_{-} \begin{array}{c} 0.12 \\ 0.09 \end{array} \pm 0.06$	$\textbf{2.2} \pm \textbf{0.5} \pm \textbf{0.1}$	$-$ 0.6 \pm 0.5 \pm 0.1
BABAR	$0.60 \pm \ 0.03 \pm 0.02$	$0.16 \pm 0.03 \pm 0.01$	${\bf 2.50 \pm 0.20 \pm 0.08}$	$- \ 0.17 \pm 0.16 \pm 0.07$
Belle	$0.62 \pm \ 0.02 \pm 0.03$	$0.19 \pm 0.02 \pm 0.03$	${\bf 2.83 \pm 0.19 \pm 0.04}$	$-0.09\pm0.13\pm0.06$

$$B \to \eta_c K$$

	$Br(B^0 \rightarrow \eta_c K^0)$ (×10 ⁻³)	$Br(B^+ \rightarrow \eta_c K^+) (\times 10^{-3})$
CLEO	1.09 $^+_{-0.42}$ \pm 0.12 \pm 0.31	0.69 $^+_{-0.21}$ \pm 0.08 \pm 0.20
BaBar ¹	$1.06 \pm 0.28 \pm 0.11 \pm 0.33$	${\bf 1.50 \pm 0.19 \pm 0.15 \pm 0.46}$
Belle ¹	$1.23 \pm 0.23 \ \substack{+ \ 0.12 \\ - \ 0.16 } \pm 0.38$	$1.25 \pm 0.14 \ \ {}^{+}_{-} \ \ {}^{0.10}_{0.12} \pm 0.38$

	$\Gamma^{ ext{intrinsic}}$		
	(MeV/c ²)		
PDG	13 ⁺ ^{3.8} - ^{3.2}		
CLEO	27 ± 6.0		

1. Use $K_{s}K^{-}\pi^{+}$ and $K^{+}K^{-}\pi^{0}$ modes to derive branching fraction.

Exclusive B $\rightarrow J/\psi$, ψ (2S), χ_{c1}

Decay mode	Branching fraction (×10 ⁻⁴)		
	Previous	BABAR	Belle
B⁻→ J/ψK⁻	10.0±1.0 [1]	10.1±0.3±0.5	10.1±0.3±0.8
$B^0 \rightarrow J/\psi K^0$	9.6±0.9 [1]	8.3 ±0.4±0.5	7.7±0.4±0.7
$B^+ \rightarrow J/\psi K_1^+(1270)$			18.0±3.4±3.9 ★
B ⁰ → J/ψK ₁ ⁰ (1270)			13.0±3.4±3.1 ★
$B^- \rightarrow \psi$ (2S) K^-	5.8±1.0 [1]	6.4 ±0.5±0.8	6.7±0.6±0.7 (ψ (2S) \rightarrow /+/)
			5.7±0.5±0.8 (ψ (2S) \rightarrow J/ $\psi\pi\pi$)
$B^0 \rightarrow \psi(2S)K^0$	5.0±1.3 [2]	6.9 ±1.1±1.1	6.0±1.1±0.7 (ψ (2S) \rightarrow /+/)
			7.2±1.1±1.1 (ψ (2S) → J/ψππ)
$B^- \rightarrow \chi_{c1} K^-$	10.0± 4.0 [1]	7.5±0.8±0.8	6.1±0.6±0.6
${\bm B}^{\bm 0} \to \chi_{c1} K^0$	3.9 +1.9 [1]	5.4 ±1.4±1.1	3.1±0.9±0.4
${\bm B}^{\bm 0} \to \chi_{c1} K^{\star 0}$	-1.4	4.8 ±1.4±0.9 ★	
$B^- \rightarrow J/\psi \pi^-$	0.41±0.15 [1]	0.39±0.09	0.52 ± 0.07 ± 0.07
${\sf B^0} ightarrow {\sf J/\psi} \pi^0$	0.25 ^{+0.11} [1]	0.20±0.06±0.02	0.24 ± 0.06± 0.02

[1] PDG, [2] CLEO, **★** first observation,

The charmonium system

First observation of exclusive $\eta_c(2S)$

First observation of exclusive $\eta_c(2S)$ Yield 39 ± 11 Belle 80 η_c(1S) signif. $> 6\sigma$ Events/40 MeV/c² η_c(2S) η_c(2S) 40 $M = 3654 \pm 6 \pm 8 MeV/c^2$ *J*/ψ $\Gamma_{\eta_{C}(2S)}^{tot} < 55 \text{ MeV/c}^2$ (90% C.L.) 3100 3700 2900 3300 3500 **Inconsistent with the** $M(K_sK\pi)$ (MeV/C²) **Crystal Ball result** 3594±5 MeV

$$\frac{B(B \to \eta_c(2S)K)B(\eta_c(2S) \to KsK^-\pi^+)}{B(B \to \eta_c(1S)K)B(\eta_c(1S) \to KsK^-\pi^+)} = 0.38 \pm 0.12 \pm 0.05$$

Summary

Improved measurements for branching fractions

• $B \rightarrow J/\psi K^{(*)}, B \rightarrow \psi(2S) K, B \rightarrow \chi_{c1} K, \dots$

First observations of the B decay modes

- $B^0 \rightarrow \chi_{c1} \ K^{0*} (BABAR)$
- $B^+ \rightarrow \chi_{c0} K^+$, $B \rightarrow \chi_{c2} X$, $B^0 \rightarrow \eta_c K^{*0}$, $B \rightarrow J/\psi K_1(1270)$ (Belle)
- Br(B⁺ $\rightarrow \chi_{c0}$ K⁺) and Br(B $\rightarrow \chi_{c2}$ X) are comparable to Br(B⁺ $\rightarrow J/\psi$ K⁺) and Br(B $\rightarrow \chi_{c1}$ X)
- Belle has observed the η_C(2S) meson. The mass agrees with the heavy-quark potential model expectations