

$b \rightarrow s \, \ell^+ \ell^-$ at Belle

~ Exclusive and Inclusive Analysis Results

Katsumi Senyo Nagoya University

May 16~18, 2002 Flavor Physics and CP Violation

Introduction

 $b \rightarrow s \, \ell^+ \ell^-$ Diagrams:

Flavor Changing Neutral Current (FCNC) process is sensitive to new physics (SUSY, charged Higgs...).

Very rare decays(BF~10⁻⁶(exclusive),10⁻⁵(inclusive)).

Exclusive mode – experimentally easy to analyze.

Inclusive mode – theoretically easy to extract parameters.

Effective Hamiltonian Approach

 $\frac{d\Gamma\left(b \rightarrow s\ell^{+}\ell^{-}\right)}{d\hat{s}} = \left(\frac{\alpha}{4\pi}\right)^{2} \frac{G_{F}^{2}m_{b}^{5}\left|V_{ts}^{*}V_{tb}\right|^{2}}{48\pi^{3}} \left(1-\hat{s}\right)^{2}$ $\times \left[\left(1 + 2\hat{s} \right) \left(\left| C_{9}^{\text{eff}} \right|^{2} + \left| C_{10}^{\text{eff}} \right|^{2} \right) + \left(1 + \frac{\hat{s}}{2} \right) \left| C_{7}^{\text{eff}} \right|^{2} + 12 \operatorname{Re} \left(C_{7}^{\text{eff}} C_{9}^{\text{eff}} \right) \right|$ $(\hat{s} = M^2(\ell^+\ell^-)/M_B^2)$ $C_7^{\text{eff}}, C_9^{\text{eff}}, C_{10}^{\text{eff}}$ is C_7, C_9, C_{10} + higher order correction

Standard Model

 $C_7^{\text{eff}}, C_9^{\text{eff}}, C_{10}^{\text{eff}}$ are calculated to NNLO Ali-Lunghi-Greub-Hiller, hep-ph/0112300

Predicted Branching Fraction

Mode	$BF(\times 10^{-6})$	Mode	$BF(\times 10^{-6})$	
$X_s e^+ e^-$	6.89 ± 1.01	$K^*e^+e^-$	1.58 ± 0.49	
$X_{s}\mu^{+}\mu^{-}$	4.15 ± 0.70	$K^*\mu^+\mu^-$	1.19 ± 0.39	
		$K\ell^+\ell^-$	0.35 ± 0.12	

... is expressed as corrections to SM **Beyond SM**

Exclusive mode analysis results

29fb⁻¹ data

mode	#signal	$BF(\times 10^{-6})$	signif.
Ke^+e^-	$4.1^{+2.7+0.6}_{-2.1-0.8}$	<1.3	2.5
$K^*e^+e^-$	$6.3^{\scriptscriptstyle +3.7+1.0}_{\scriptscriptstyle -3.0-1.1}$	< 5.6	2.5
$K\mu^+\mu^-$	$9.5^{\scriptscriptstyle +3.8+0.8}_{\scriptscriptstyle -3.1-1.0}$	$0.99^{\tiny +0.40+0.13}_{\tiny -0.32-0.14}$	4.7
$K^*\mu^+\mu^-$	$2.1^{\scriptscriptstyle +2.9+0.9}_{\scriptscriptstyle -2.1-1.0}$	< 3.1	_
$K\ell^+\ell^-$	$13.6^{+2.9+0.9}_{-2.1-1.0}$	$0.75^{+0.40}_{-0.32} \pm 0.09$	5.3

$$B \rightarrow K \ell^+ \ell^-$$
 Observation.

PRL88 021801(2002)

A.Ishikawa, Ph.D Thesis, Nagoya Univ. (2002)

Inclusive Analysis in General

Thrust angle, B flight direction, Energy difference (ΔE), veto mass region

Double b->clv->slv, c->slv decay background suppression

Lepton ID, Fisher Discriminant (Missing Mass, Total Energy)

$B \rightarrow X_{s} \ell^{+} \ell^{-}$ Inclusive mode analysis

Signal Requirement

 $X_s = (K^+ \text{ or } K_s) + (0 \sim 4)\pi \text{ (upto one } \pi^0)$

Yield from M_{bc} fit(Gaussian and ARGUS function)

Best candidate based on ΔE , vertex quality, B flight direction

and *K* - ℓ^{\pm} angular correlation

Reconstruction efficiency:

Inclusive: ~4% Exclusive: ~10%

43fb-1 data used in this inclusive analysis.

$B \rightarrow X_{S} \ell^{+} \ell^{-} MC$ decay Modeling

Based on the NNLO calculation.

[Ali-Lunghi-Greub-Hiller, hep-ph/0112300]

J/y Suppression For exclusive modes J/y For inclusive modes J/y

Tight charmonia veto:

 $-0.35 \text{GeV} / c^{2} < M(\mu\mu) - M(J/\psi) < 0.2 \text{GeV} / c^{2}$ $-0.30 \text{GeV} / c^{2} < M(\mu\mu) - M(\psi') < 0.15 \text{GeV} / c^{2}$ $-0.60 \text{GeV} / c^{2} < M(ee) - M(J/\psi) < 0.15 \text{GeV} / c^{2}$ $-0.30 \text{GeV} / c^{2} < M(ee) - M(\psi') < 0.15 \text{GeV} / c^{2}$

Charmonium contaminations after veto:

 $0.5 \pm 0.3 \text{ events for } X_{s}e^{+}e^{-}$ $0.3 \pm 0.1 \text{ events for } X_{s}\mu^{+}\mu^{-}$

$B \rightarrow X_{S}h^{+}h^{-}$ Background

Doubly misidentified h^+h^- as $\mu^+\mu^-$

Background Estimation:

 $N(B \rightarrow X_s h^+ h^-)$ x mis-ID(fake) rate measured w/ data $2.4^{+0.5}_{-0.4}$ Xs $h^+ h^-$ background events @ $43 fb^{-1}$

Inclusive mode analysis results

BF($\times 10^{-6}$) **UL**($\times 10^{-6}$) **Signif**. Mode **#Signal** $(5.1^{+2.6+1.3}_{-2.4-1.2})$ $16.6^{+8.0+3.9}_{-7.3-3.8}$ $X_{s}e^{+}e^{-}$ $X_{s}\mu^{+}\mu^{-}$ 30.7^{+7.9+5.4}_{-7.4-3.8} $8.9^{+2.3+1.6}_{-2.1-1.7}$ $X_{s}\ell^{+}\ell^{-}$ 47.6^{+11.0+9.6} $7.1^{+1.6+1.4}_{-1.6-1.2}$

<11.0 2.1

> 4.4 **First Evidence!**

4.8 **First Evidence!** Preliminary

M(Xs) slices of M_{bc} Distribution

With higher statistics, more information will be obtained from M(Xs) and M(II) distributions.

Systematic uncertainties

Source $B \rightarrow X_{s}e^{+}e^{-}$ $B \rightarrow X_{s}\mu^{+}\mu^{-}$

Tracking	8.1%	8.0%
Kaon ID	1.9%	2.0%
Pion ID	0.8%	0.8%
Lepton ID	3.6%	4.4%
K_s detection	2.1%	1.5%
π^0 detection	2.0%	1.6%
MC Statistics	3.9%	4.1%
Decay modeling	$^{+14}_{-9}\%$	$^{+16}_{-12}\%$

Total $+18 \\ -14 \% +19 \\ -16 \%$

Exclusive & Inclusive: Summary

_	Mode	Eff.	#Signal	BF (×10 ⁻⁶)	$UL(\times 10^{-6})$	Signif	
<u>e</u>	Ke^+e^-	13.6%	$4.1^{+2.7+0.6}_{-2.1-0.8}$	_	<1.3	2.5	
mod	$K^*e^+e^-$	4.8%	$6.3^{\scriptscriptstyle +3.7+1.0}_{\scriptscriptstyle -3.0-1.1}$	_	< 5.6	2.5	
ive	$K\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$	15.2%	$9.5^{\scriptscriptstyle +3.8+0.8}_{\scriptscriptstyle -3.1-1.0}$	$0.99^{\scriptscriptstyle +0.40+0.13}_{\scriptscriptstyle -0.32-0.14}$	_	4.7	
clus	$K^*\mu^+\mu^-$	5.9%	$2.1^{\scriptscriptstyle +2.9+0.9}_{\scriptscriptstyle -2.1-1.0}$	_	< 3.1	_	
Ж	$K\ell^+\ell^-$	_	$13.6^{\scriptscriptstyle +2.9+0.9}_{\scriptscriptstyle -2.1-1.0}$	$0.75^{+0.40}_{-0.32}\pm0.09$) _	5.3	
de	!		1 + 8 0 + 3 0				
μο	$X_{s}e^{T}e^{T}$	3.6%	$16.6_{-7.3-3.8}^{+8.0+3.9}$	—	<11.0	2.1	
ive	$X_{s}\mu^{+}\mu^{-}$	3.8%	$30.7^{\scriptscriptstyle +7.9+5.4}_{\scriptscriptstyle -7.4-3.8}$	$8.9^{\scriptscriptstyle +2.3+1.6}_{\scriptscriptstyle -2.1-1.7}$	_	4.4	First Evidence
clus	$X_{s}\ell^{+}\ell^{-}$	—	$47.6^{\scriptscriptstyle +11.0+9.6}_{\scriptscriptstyle -10.4-8.0}$	$7.1^{+1.6+1.4}_{-1.6-1.2}$	—	4.8	First Evidence
Ž							_

Preliminary

Review of Measurements

Experimental results agree with SM theoretical predictions.

In several years experimental results will significantly improve the constraint on theoretical prediction well.

Conclusion

- Establish the existence of the decay $B \rightarrow K \ell^+ \ell^-$
- First evidence on inclusive $B \to X_{S} \ell^{+} \ell^{-}$

Mode	#Signal	$BF(\times 10^{-6})$	$UL(\times 10^{-6})$	Signif.
$X_s e^+ e^-$	$16.6^{\scriptscriptstyle +8.0+3.9}_{\scriptscriptstyle -7.3-3.8}$	_	<11.0	2.1
$X_{s}\mu^{+}\mu^{-}$	$30.7^{\scriptscriptstyle +7.9+5.4}_{\scriptscriptstyle -7.4-3.8}$	$8.9^{\scriptscriptstyle +2.3+1.6}_{\scriptscriptstyle -2.1-1.7}$	_	4.4
$X_{s}\ell^{+}\ell^{-}$	$47.6^{\scriptscriptstyle +11.0+9.6}_{\scriptscriptstyle -10.4-8.0}$	$7.1^{\scriptscriptstyle +1.6+1.4}_{\scriptscriptstyle -1.6-1.2}$	_	4.8

- Both consistent with SM predictions
- Promising probe for Beyond SM physics at B-factories in next several years

...stay tuned and we will be back soon.

Belle/KEKB Data Accumulation

M(Xs) Distribution

With the higher statistics, more information will be obtained from M(Xs) distribution.

M(II) Distribution

With the higher statistics, more information will be obtained from M(Xs) distribution.

$\Delta \boldsymbol{E}$ distribution and fit results

 ΔE distribution fit for cross check.

Mode	#signal
$X_{s}e^{+}e^{-}$	13.6 ± 7.8
$X_{s}\mu^{+}\mu^{-}$	20.8 ± 8.5
$X_{s}\ell^{+}\ell^{-}$	31.9±12.5

Signal yields are consistent with the Mbc fit results.