Results from BaBar on the Decays $B \rightarrow KI^+I^-$ and $B \rightarrow K^*I^+I^-$

John J. Walsh INFN-Pisa

FPCP-2002, U.Pennsylvania

Outline

- Introduction
- Analysis Overview
 - Control Samples
 - Results

B R K^(*)I⁺I⁻ in the SM and Beyond

- Flavor changing neutral current: proceeds via loop or box diagrams ⇒ quite small SM branching ratios
- Massive particles can contribute to the loop/box: top quark, Higgs, SUSY⇒ sensitivity to New Physics

Branching Fraction Predictions in the Standard Model

Authors	${\cal B}(B o K l^+ l^-)$	${\cal B}(B o K^* \mu^+ \mu^-)$	${\cal B}(B o K^* e^+ e^-)$
	$/10^{-6}$	$/10^{-6}$	$/10^{-6}$
Ali et al. 2000	$0.57^{+0.17}_{-0.10}$	$1.9\substack{+0.5 \\ -0.4}$	$2.3^{+0.7}_{-0.5}$
Ali et al. 2001 (NNLO)	0.35 ± 0.12	1.19 ± 0.39	1.58 ± 0.49
Colangelo et al.	0.3	1.0	
Melikhov et al.	0.44	1.15	1.50
Aliev et al.	0.31 ± 0.09	1.4	
Geng and Kao	0.5	1.4	

- $\mathcal{B}(B \to K\ell^+\ell^-) =$ $(0.35 \pm 0.11 (\text{form fac.}) \pm 0.04(\mu_b) \pm 0.02(m_{t,\text{pole}}) \pm 0.0005(m_c/m_b)) \times 10^{-6}$ [Ali, Lunghi, Greub, Hiller, hep-ph/0112300, 2001]
- $\mathcal{B}(B \to X_s \mu^+ \mu^-) = (4.15 \pm 0.70) \times 10^{-6}$ (All pre- $\mathcal{B}(B \to X_s e^+ e^-) = (6.89 \pm 1.01) \times 10^{-6}$ J/y contrast

(All predictions exclude J/y contribution.)

Decay rate vs. q^2 in the SM and SUSY

- Solid line+blue bands: SM range ($\pm 35\%$); Ali *et al.* form factors **destructive**
- Dotted line: SUGRA model ($R_7 = -1.2, R_9 = 1.03, R_{10} = 1; R_i = C_i / C_i^{SM}$)
- Long-short dashed line: SUSY model ($R_7 = -0.83$, $R_9 = 0.92$, $R_{10} = 1.61$) K^(*)II Results from BaBar, J. Walsh, FPCP-2002

Recent Experimental Results

• Belle has published a signal based on 29.1 fb⁻¹.

 $B(B \to Kl^+l^-) = (0.75^{+0.25}_{-0.21} \pm 0.09) \times 10^{-6}$ $B(B \to K \mathbf{m}^+ \mathbf{m}^-) = (0.99^{+0.40+0.13}_{-0.32-0.14}) \times 10^{-6}$ $B(B \to K^* \mathbf{m}^+ \mathbf{m}^-) < 3.1 \times 10^{-6}$ $B(B \to K^* e^+ e^-) < 5.6 \times 10^{-6}$

 Our upper limit from Run 1 (based on 20.7 fb⁻¹, submitted to PRL):

> $B(B \to K l^+ l^-) < 0.51 \times 10^{-6}$ 90% C.L. $B(B \to K^* l^+ l^-) < 3.1 \times 10^{-6}$ 90% C.L.

B Meson Reconstruction at U(4s)

$$e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$$

$$m_{ES} = \sqrt{E_{beam}^{*2} - (\sum_{i} p_{i}^{*})^{2}}$$
$$\Delta E = \sum_{i} \sqrt{p_{i}^{*2} + m_{i}^{2}} - E_{beam}^{*}$$

0

Typical resolutions: s(m_{ES}) » 2.5 MeV s(DE) » 25 - 40 MeV

- (*) = measured in Y(4S) rest frame
- $E_i \leftarrow \rightarrow E^*_{beam} \rightarrow I$ mprove resolution
- Define 3 regions in ∆E, m_{ES} plane:
 - A Signal region
 - ✤ B Fit region

R

& C – Large Sideband region

Analysis Strategy I

- Lepton and kaon I D, candidates formed for the different channels:
 - ${\tt \ensuremath{\$}} \; B^{\scriptscriptstyle +} \to K^{\scriptscriptstyle +} \: I^{\scriptscriptstyle +} \: I^{\scriptscriptstyle -},$ where I is either $e \text{ or } \mu$
 - \circledast B⁺ \rightarrow K^{*+} I⁺ I⁻, where K^{*+} \rightarrow K⁰ π ⁺ and K⁰ \rightarrow π ⁺ π ⁻
 - $B^0 \rightarrow K^0 I^+ I^-$
 - \circledast B⁰ \rightarrow K^{*0} I⁺ I⁻, where K^{*0} \rightarrow K⁺ π^-

- Apply selection to suppress backgrounds from:
 - Sontinuum events event shape
 - ℽ BB events vertexing, E_{miss}
 - 𝔅 B→J/ψ(→I⁺I⁻)K decays exclude regions in ΔE, m(I⁺I⁻) plane
 - Peaking backgrounds (small)
- Selection criteria optimized on simulated or "large sideband" events. The full fit region is blind.

Analysis Strategy II

- Monte Carlo is used for signal efficiencies and to estimate contributions from the peaking backgrounds.
- We use *control samples* in the data to check the MC:
 - Decays to charmonium. Each signal-mode final state has a "signal-like" control sample that is identical except for the restricted range of q². (Also a serious background!)
 - <u>"Large sideband" in m_{ES} vs. DE plane</u>: checks comb. bkgd.
- The signal is extracted from a 2-D fit to the m_{ES} vs. ΔE plane. Both the background normalization and its shape float. The signal shapes are taken from MC + tuning from J/ ψ samples.

B®J/y(®I+I-)K : Background Source

- Actually, this channel is "part" of the signal, with $q^2 = m(\psi)^2$
- However, we are not interested in this part of the signal and it must be removed by direct veto.

- When the leptons from $J/\psi \rightarrow l^+l^$ radiate or are mismeasured, the event shifts in both $m(\psi)$ and in ΔE .
- Remove these events from BG region as well: simplify fit in m_{ES} vs. ΔE plane

K^(*)II Results from BaBar, J. Walsh, FPCP-2002

B®J/y(®I⁺I⁻)K : Control Sample

- Kinematics very similar to the signal
- Sample of such events can be used to verify efficiencies of essentially all selection criteria
- Excellent agreement found in data/MC comparison

Points: data Histo: MC

E.g. study tails in M(I⁺I⁻) distribution

J/y and Large Sideband Control Sample Study: *B* Likelihood Variable

Charmonium Control Samples: Yields in Data vs. Simulation

Mode	ϵ (%)	MC Yield	Data Yield	Data/MC (%)
$B^+ ightarrow K^+ e^+ e^-$	18.0	669	660	98.6 ± 4.3
$B^+ \to K^+ \mu^+ \mu^-$	15.9	553	502	90.8 ± 4.5
$B^0 ightarrow K^0 e^+ e^-$	18.4	191	190	99.4 ± 7.3
$B^0 \rightarrow K^0 \mu^+ \mu^-$	16.0	157	161	102.6 ± 8.2
$B^0 ightarrow K^{*0} e^+ e^-$	12.3	375	367	97.9 ± 5.6
$B^0 ightarrow K^{st 0} \mu^+ \mu^-$	10.2	293	343	117.3 ± 7.1
$B^+ ightarrow K^{*+} e^+ e^-$	9.5	114	102	89.6 ± 9.2
$B^+ ightarrow K^{*+} \mu^+ \mu^-$	7.8	88	89	101.7 ± 11.2
$B o K^+ \ell^+ \ell^- \ (e+\mu)$		1222	1162	95.0 ± 3.1
$B o K^0 \ell^+ \ell^- \; (e+\mu)$		348	351	100.9 ± 5.4
$B ightarrow K^{st 0} \ell^+ \ell^- \; (e+\mu)$		667	710	106.4 ± 4.4
$B ightarrow K^{*+} \ell^+ \ell^- \; (e+\mu)$		201	191	94.9 ± 7.1
All e^+e^- modes		1349	1319	97.8 ± 2.8
All $\mu^+\mu^-$ modes		1090	1095	100.5 ± 3.2
All modes		2439	2414	99.0 ± 2.1

Unblinded Run 1+2 data

Unblinded Run 1+2 data

m_{ES}

K^(*)II Results from BaBar, J. Walsh, FPCP-2002

Signal Candidate Properties

2 of these consistent

 M(II) – no apparent pileup near the J/ψ vetoes

Preliminary !

- M(KI) possible background from B →
 Dπ, D → Kπ, both π's mis-id'd as electrons. (Note, this peaking BG is explicitly vetoed in Kµµ channel).
- Simulation predicts 0.06 events of this background for this channel
- Studies of electron mis-id probabilities show no indication of problem.
- Nevertheless, include systematic error to account for possibility that 2 of these events are BG.

Fit Results I

• Results of max likelihood fit in $\Delta E - m_{ES}$ plane for the 8 channels

	Signal	Eff.	ε	$(\Delta \mathcal{B}/\mathcal{B})$	$\epsilon (\Delta \mathcal{B})_{\rm fit}$	${\mathcal B}$
Mode	yield	bkgd	(%)	(%)	(10 ⁻⁶)	(10 ⁻⁶)
$B^+ \rightarrow K^+ e^+ e^-$	$9.6^{+4.6}_{-3.3}$	1.9	17.1	± 6.8	+0.11 -0.23	$0.91^{+0.42+0.13}_{-0.32-0.24}$
$B^+ \rightarrow K^+ \mu^+ \mu^-$	$0.8^{+2.5}_{-1.3}$	1.2	9.9	± 6.8	± 0.10	$0.13^{+0.37}_{-0.23}\pm0.10$
$B^{\mathbb{D}} \to K^{\mathbb{D}} e^+ e^-$	$1.8^{+2.8}_{-1.3}$	1.1	18.1	± 8.0	± 0.35	$0.47^{+0.69}_{-0.39}\pm0.35$
$B^{\mathbb{D}} \rightarrow K^{\mathbb{D}} \mu^+ \mu^-$	$2.9^{+2.7}_{-1.5}$	0.4	10.3	±7 . 8	±0.22	$1.34^{+1.16}_{-0.78}\pm0.25$
$B^{\mathbb{D}} \to K^{*\mathbb{D}}e^+e^-$	$7.3^{+4.7}_{-3.5}$	3.4	10.2	±7.7	±0.48	$1.66^{+1.08}_{-0.83}{\pm}0.50$
$B^{\mathbb{D}} \to K^{*\mathbb{D}} \mu^+ \mu^-$	$4.6^{+4.2}_{-2.9}$	2.3	6.6	±9.3	±0.39	$1.68^{+1.57}_{-1.09}\pm0.42$
$B^+ \rightarrow K^{*+} e^+ e^-$	$1.5^{+4.0}_{-2.0}$	4.9	9.8	±9.7	+1.D4 -1.D6	$1.07^{+2.86+1.04}_{-1.51-1.06}$
$B^+ \rightarrow K^{*+} \mu^+ \mu^-$	$2.8^{+3.5}_{-2.0}$	1.5	5.4	± 11.1	±1.82	$3.68^{+4.39}_{-2.88}\pm1.86$

Fit Results Preliminary ! (a) $K I^{+} I^{-}$ (b) Kl⁺l⁻ Combining channels: m_{FS} and ΔE projections for KII and K*II (d) $K^* I^+ I^ B(B \rightarrow K^*ee)/B(B \rightarrow K^*\mu\mu)=1.21$ (c) Kfrom Ali, et al, is used in combined K*II fit. 5.22 5.24 5.26 5.28 -0.2 -0.1 5.20 0.1 0.2 $m_{\rm FS} ({\rm GeV} k^2)$ $\Delta E (\text{GeV})$ $B(B \to K\ell^+\ell^-) = (0.84^{+0.30+0.10}_{-0.24-0.18}) \times 10^{-6}$

 $B(B \to K^* \ell^+ \ell^-) = (1.89^{+0.84}_{-0.72} \pm 0.31) \times 10^{-6}$

Systematic Uncertainties

Systematic errors on the fit yields

- Signal shapes
- Background shapes
 - o includes peaking background uncertainty

~ 0.5 – 2.0 events

Signal Statistical Significance

- Statistical significance of signal is computed:
 - Toy MC: fit to background-only toy experiments and observe how often we obtain signal larger than observed signal in data.
 - Consider change in In L when fixing the signal component to zero in fit (Gaussian approximation).

✤ Results:

 $KI^+I^- \Rightarrow 5.0\sigma$, if systematics included \Rightarrow still > 4σ $K^*I^+I^- \Rightarrow 3.5\sigma$

• Based on the K*I⁺I⁻ result we place an upper limit for this channel:

$$B(B \to K^* \ell^+ \ell^-) < 3.5 \times 10^{-6}$$
 @ 90% CL

Comparison to Our Run 1 Result

• Run 1:

 $B(B \to K l^+ l^-) < 0.51 \times 10^{-6}$ 90% C.L. $B(B \to K^* l^+ l^-) < 3.1 \times 10^{-6}$ 90% C.L.

$$B(B \to K\ell^+\ell^-) = (0.84^{+0.30+0.10}_{-0.24-0.18}) \times 10^{-6}$$
$$B(B \to K^*\ell^+\ell^-) < 3.5 \times 10^{-6}$$

Preliminary !

- All data fully reprocessed for Run 1+2 results: improvements in tracking, vertex detector alignment, etc. ⇒ resulted in migration of events in/out of signal region. Sensitivity of this analysis is mostly unchanged by the reprocessing (some improvement in K_s modes).
- Migration of events into/out of signal region checked with control samples ⇒ results are compatible
- The probability for a **KII** branching fraction at our new value to give our Run 1 result is at the 2-3% level.

Conclusions

- We have studied the channels B → KI⁺I⁻ and B → K^{*}I⁺I⁻ using 56.4 fb-1 of data at the BaBar experiment at PEP-II.
- We obtain the following results:

Preliminary !

$$B(B \to K\ell^+\ell^-) = (0.84^{+0.30+0.10}_{-0.24-0.18}) \times 10^{-6}$$

$$B(B \to K^*\ell^+\ell^-) < 3.5 \times 10^{-6}$$

• The statistical significance for $B \to Kl^+l^-$ is computed to be > 4σ including systematic uncertainties.

Peaking Backgrounds

• Usually due to particle mis-idenficiation, e.g.:

Mis-id'd as muons \Rightarrow Kµµ background

- Since mis-id probability is higher for muons than for electrons, explicit vetoes are applied for the muon modes.
- Summary of peaking backgrounds as obtained from high statistics Monte Carlo sample.
- These are included in fit to extract signal.

Mode	Peaking background		
$B^{\pm} \rightarrow K^{\pm} e^+ e^-$	0.06 ^{+0.7} _{-0.06}		
$B^{\pm} \to K^{\pm} \mu^{+} \mu^{-}$	0.5 ± 0.5		
$B^{\mathbb{D}} \rightarrow K^{\mathbb{D}}_{S}e^{+}e^{-}$	0.0 ^{+0.1} -0.0		
$B^0 \rightarrow K^0_{S} \mu^+ \mu^-$	0.3 ± 0.3		
$B^{\mathbb{D}} \rightarrow K^{*\mathbb{D}}e^+e^-$	0.3 ± 0.3		
$B^{\mathbb{D}} \rightarrow K^{*\mathbb{D}} \mu^+ \mu^-$	0.8 ± 0.8		
$B^{\pm} \rightarrow K^{*\pm} e^+ e^-$	$0.05^{+0.3}_{-0.05}$		
$B^{\pm} \rightarrow K^{*\pm} \mu^+ \mu^-$	0.7 ± 0.7		

Continuum Background Suppression

- Continuum suppression: exploit fact that continuum events are more jet-like than BB events

 - Cos θ_{B} : angle of B in CM
- Combine optimally using Fisher discriminant
- Put plot here.

Particle Identification

Electrons – p* > 0.5 GeV

shower shapes in EMC

•E/p match

• Muons – p* > 1 GeV

- Penetration in iron of IFR
- Kaons
 - dE/dx in SVT, DCH
 - $\theta_{\rm C}$ in DRC

K^(*)II Results from BaBar, J. Walsh, FPCP-2002

 θ c

Kaons with **DIRC**

 The DIRC is able to identify particles via a measurement of the cone angle of their emitted Cherenkov light in quartz

 Provides good π/K separation for wide momentum range (up to ~4 GeV/c)

Particle Identification (DIRC)

(Detector of Internally Reflected Cherenkov Light)

Measure Angle of Cherenkov Cone in quartz

$$\cos ?_{c} = \frac{1}{n\beta}, p = m\beta g$$

- Transmitted by internal reflection
- Detected by PMTs

Particle Identification (DIRC) cont'.

• DI RC θ_c resolution and K- π separation measured in data $\Rightarrow D^{*+} \rightarrow D^0 \pi^+$ $\rightarrow (K^-\pi^+)\pi^+$ decays

J/y Control Samples: Lepton energy distributions

J/y Control Samples: Lepton energy distributions

Data Sample

• $e^+ e^- \rightarrow \Upsilon(4s) \rightarrow BB$ data used for

this talk

K^(*)II Results from BaBar, J. Walsh, FPCP-2002