Exclusive $B \to K^{**} \gamma$ decays

Dan Pirjol Johns Hopkins University

- Model predictions for absolute rates
- $B \to K \pi \pi \gamma$ correlations as a probe of photon helicity

$b \to s \gamma$ in the Standard Model

• In the Standard Model, $b \rightarrow s\gamma$ decays are mediated by the electromagnetic penguin operator

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{ts} V_{tb}^* C_7 \mathcal{O}_7 \quad \left(\mathcal{O}_7 = \frac{em_b}{16\pi^2} \bar{s} \sigma_{\mu\nu} \frac{1}{2} (1+\gamma_5) b F^{\mu\nu} \right)$$

Experiment

Theory (SM)

 $Br(B \to X_s \gamma)$ (3.22 ± 0.40) × 10⁻⁴ (3.29 ± 0.33) × 10⁻⁴

- Couples mostly to left-handed photons because of the
 (V − A) W[±] couplings to quarks in the Standard Model
 (right-handed for b̄ → s̄γ)
- The most general case can include both left- and right-handed couplings

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{ts} V_{tb}^* \left(C_{7L} \mathcal{O}_{7L} + C_{7R} \mathcal{O}_{7R} \right)$$

• While the rate is only sensitive to $|C_{7R}|^2 + |C_{7L}|^2$, the photon polarization can probe the individual Wilson coefficients

$$P_{\gamma} = \frac{|C_{7R}|^2 - |C_{7L}|^2}{|C_{7R}|^2 + |C_{7L}|^2}$$

Beyond the Standard Model

• MSSM: new additional particles can run in the loop

- Minimal Flavor Violation: the New Physics contributions producing a right-handed photon cancel
- C_{7R} scenario: complete cancellation with W^{\pm} leaving $C_{7L} = 0$ Everett, Kane, Rigolin et al (2001)
- The left-right symmetric model $SU_L(2) \times SU_R(2)$ can also produce right-handed photons

Cho, Misiak (1997)

Exclusive $B \to X_s \gamma$ decays

The exclusive modes are dominated by the lowest lying vector meson K^*

$$\mathcal{B}(B^+ \to K^{*+}\gamma) = (3.83 \pm 0.62 \pm 0.22) \times 10^{-5}$$
$$\mathcal{B}(B^0 \to K^{*0}\gamma) = (4.23 \pm 0.40 \pm 0.22) \times 10^{-5}$$

Higher excitations have been also seen

$$Br(B \to K_2^*(1430)\gamma) = \begin{cases} (1.50^{+0.58+0.11}_{-0.53-0.13}) \times 10^{-5} & \text{(CLEO)} \\ (1.66^{+0.59}_{-0.53} \pm 0.13) \times 10^{-5} & \text{(BELLE)} \end{cases}$$

The absolute values of the rates depend on the value of a hadronic form factor - can be computed in models

	J^P	(M,Γ)	$\mathcal{B}/\mathcal{B}(B \to X_s \gamma)$
$K_1(1270)$	1+	(1273, 90)	4.3 ± 1.6
$K_1(1400)$	1^{+}	(1402, 174)	2.1 ± 0.9
$K_1^*(1410)$	1-	(1414, 232)	4.1 ± 0.6
$K_{2}^{*}(1430)$	2^{+}	(1430, 100)	6.2 ± 2.9

The numerical estimates are from the quark model calculation of Olsson, Veseli - Phys. Lett. B367, 309, 1996

Measuring the photon polarization in $b ightarrow s \gamma$

• Time-dependent CP asymmetry in $B^0(t) \rightarrow K^*/\rho\gamma$ Atwood, Gronau, Soni (1995)

Problems: small Br $\simeq 10^{-6}$, need for tagging and time-dependent measurements

Problems: feasible only at e^+e^- machines (Giga-Z), small Λ_b polarization?

• Angular correlations in $B \to (K^* \to K\pi)e^+e^-$ Kim², Lü, Morozumi (2000), Grossman, Pirjol (2000)

Photon polarization from $B \to (K^{**} \to K\pi\pi)\gamma$ angular correlations

 In the decay B → K*γ, the photon helicity is transferred to the hadron K*. Is it possible to measure it through the strong decays K* → |f⟩?

This requires $|A(K_R^* \to f)| \neq |A(K_L^* \to f)|$

In two body decays K^{*} → Kπ parity invariance of the strong interactions rules out a right/left asymmetry.

This is possible in 3-body decays of K^{**} resonances

Gronau, Grossman, D.P., Ryd (2001)

• Such decays have been recently observed at CLEO (2000) and BELLE (2001)

$$Br(B \to K_2^*(1430)\gamma) = \begin{cases} (1.50^{+0.58+0.11}_{-0.53-0.13}) \times 10^{-5} & \text{(CLEO)} \\ (1.66^{+0.59}_{-0.53} \pm 0.13) \times 10^{-5} & \text{(BELLE)} \end{cases}$$

The most general distribution involves the interference of multiple decay channels and partial waves \rightarrow strong phases required for a nonvanishing T-odd asymmetry

$$B^{+} \to \left\{ \begin{array}{c} K_{1}(1400) \\ K_{1}(1410) \\ K_{2}^{*}(1430) \end{array} \right\} \gamma \to \left\{ \begin{array}{c} K^{*+}\pi^{0} \\ K^{*0}\pi^{+} \\ \rho^{+}K^{0} \end{array} \right\} \gamma \to K^{0}\pi^{+}\pi^{0}\gamma \,.$$

Many of the partial widths and strong phases have been directly measured in a $K\pi\pi$ production experiment (ACCMOR (1981)).

$$R_1 = 0.22 \pm 0.03, \quad R_2 = 0.01 - 0.05$$

 \rightarrow angular measurements can disentangle the resonances and allow the extraction of the photon polarization.

Conclusions

- The photon polarization in b → sγ contains information about the Wilson coefficients of the penguin operators in the weak Hamiltonian and can offer important clues about New Physics contributions to rare B decays
- New method for extracting the photon polarization through T-odd correlations in $B \to (K_{res} \to K\pi\pi)\gamma$ decays
- Advantages compared with previous methods:
 - Both charged and neutral B's can be used → larger branching ratios
 - No tagging and time-dependent measurements required
- Assuming dominance by the K₁(1400) resonance, about 80
 B decays are required to confirm the SM prediction of a left-handed photon P_γ = -1 at a 3σ level. Such a measurement is well within the reach of existing B factories!