CP Violation in D Meson Decays

- Expectation
- Experiments
- Rate Asymmetries
- Other Approaches
- Outlook

Very small in charm since mixing is suppressed (i.e. good hunting ground for new physics)

Direct CPV:

1) Consider $D^0 \rightarrow \pi^+\pi^-$

(same for K⁺K^{-,} K⁺K^{- π^+}, K⁺K^{- π^0}, $\phi\pi^+$, $\pi^+\pi^-\pi^+$, $\pi^+\pi^-\pi^0$, etc...)

Direct CPV:

1) Consider $D^0 \rightarrow \pi^+\pi^-$

(same for K⁺K^{-,} K⁺K^{- π^+}, K⁺K^{- π^0}, $\phi\pi^+$, $\pi^+\pi^-\pi^+$, $\pi^+\pi^-\pi^0$, etc...)

...we can modify it's topology in a simple way to get a penguin:

2

 $,\frac{3}{2}$

2) Consider $D^+ \to K_S \pi^+$ (also $K_S \rho$, $K_S a_1$, $K^{*0} \pi^+$, $[K_S \pi^0]_{K*} \pi^+$, $K_S \pi^0$, $D_S \to K_S K^-$, $[K_S \pi^0]_{K*} K^-$, etc...)

$$A_{CP} = \frac{\Gamma(D^- \to K_S \pi^-) - \Gamma(D^+ \to K_S \pi^+)}{\Gamma(D^- \to K_S \pi^-) + \Gamma(D^+ \to K_S \pi^+)} = \delta_K + 2R_d \tan^2 \theta_C \sin \phi \sin \delta_d \qquad \text{Lipkin} \quad \& \text{Xing}$$

$$A_{CP} = \frac{\Gamma(D^- \to K_S \pi^-) - \Gamma(D^+ \to K_S \pi^+)}{\Gamma(D^- \to K_S \pi^-) + \Gamma(D^+ \to K_S \pi^+)} = 3 \times 10^{-3} + \text{new physics}$$

So what?

- $D^+ \rightarrow K_S \pi^+, K_S \rho^+, K_S a_1^+ \dots$ • $D^0 \rightarrow K_S \pi^0, K_S \pi^+ \pi^- \dots$ not suppressed (big BR)
- Should be able to see $\delta_{\rm K}$ induced CPV with 10⁷-10⁸ reconstructed D events.
 - This is in the ballpark for CLEO-c/Belle/BaBar
- New physics could make this asymmetry much bigger by increasing weak (and strong) phase differences.
 - If seen, this can be studied using a suite of decays involving K_L and K_S in final state. See Lipkin & Xing, P Digi & Variante D

See Lipkin & Xing, Phys. Lett B450 (1999) Bigi & Yamamoto, Phys. Lett B349 (1995)

Comments

 Since D⁺ and D⁻ (and similarly D⁰ and D⁰) are not produced in equal numbers in FOCUS and E791, these experiments normalize all asymmetries to some known Cabibbo favored mode.

For example:
$$A_{CP}(KK\pi) = \frac{\eta(D^+) - \eta(D^-)}{\eta(D^+) + \eta(D^-)}$$

where $\eta(D^{\pm}) = \frac{N(D^{\pm} \to K^{\mp}K^{\pm}\pi^{\pm})}{N(D^{\pm} \to K^{\mp}\pi^{\pm}\pi^{\pm})}$

• e^+e^- experiments need to worry about, A_{+-} , A_{FB}

D⁺ Decays

- These modes are "self-tagging" (no D* needed).
- E791 • D⁺ \rightarrow K⁺K⁻ π^+ , $\phi \pi^+$, K^{*}(892)⁰ π^+ , $\pi^+\pi^-\pi^+$
- FOCUS

 $\rightarrow D^+ \rightarrow K^+ K^- \pi^+, K_S K^+, K_S \pi^+$

M. Selen, FPCP/02 14

M. Selen, FPCP/02 15

M. Selen, FPCP/02 16

D⁰ Decays

• Use D* decays to tag D⁰ flavor:

$$D^{*+} \to \pi^{+} D^{0} \qquad \qquad \begin{cases} \pi^{+} \Rightarrow D^{0} \\ & & & \\ & & & \\ & & & D^{0} \\ & & & & \\ & & & & D^{0} \end{cases}$$

- → $D^0 \to K^+ K^-, \pi^+ \pi^-, K^- \pi^+ \pi^- \pi^+$
- FOCUS
 - $\rightarrow D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$
- CLEO
 - → $D^0 \rightarrow K^+K^-, \pi^+\pi^-, K_S\pi^0, K_SK_S, \pi^0\pi^0$

E

M. Selen, FPCP/02 20

Other Promising Approaches

- Look for CPV in Dalitz Plots:
 - \rightarrow Analyze D and \overline{D} samples separately
 - → Any differences in amplitudes & phases is an indication of CPV.
 - → Work under way by several groups.
- Examples from CLEO
 - → $D^0 \rightarrow K^- \pi^+ \pi^0$ (Published last year).
 - → $D^0 \rightarrow K_S \pi^+ \pi^-$ (Preliminary results).
 - $\rightarrow D^0 \rightarrow \pi^- \pi^+ \pi^0$ (soon...)
 - $\rightarrow D^0 \rightarrow K_S \pi^0 \pi^0$ (soon...).

	Resonance	Fit Fraction	Phase
1	ρ(770) +	0.788 ± 0.023	0 (fixed)
2	K*(892)-	0.161 ± 0.010	163 ± 4
3	K*(892) ⁰	0.127 ± 0.010	0 ± 4
4	ρ(1700) +	0.057 ± 0.011	171 ± 7
5	K ₀ *(1430) ⁰	0.041 ± 0.009	166 ± 7
6	K ₀ *(1430)-	0.033 ± 0.009	56 ± 7
7	K*(1680)-	0.013 ± 0.004	103 ± 11
8	Non-res	0.075 ± 0.011	31 ± 7

(Show Movie)

We are sensitive to the amplitude and phase of something with BR $\sim 10^{-3}$.

Fit D^0 and $\overline{D^0}$ Dalitz Plots separately and look for asymmetries:

$$\mathcal{A}_{CP} = \int \frac{\left|\mathcal{M}_{D^{0}}\right|^{2} - \left|\mathcal{M}_{\overline{D}^{0}}\right|^{2}}{\left|\mathcal{M}_{D^{0}}\right|^{2} + \left|\mathcal{M}_{\overline{D}^{0}}\right|^{2}} d\mathcal{DP}$$

Find
$$A_{CP}$$
 = 0.031 ± 0.086

(Not an optimized ACP analysis)

Fit D^0 and \overline{D}^0 samples separately

writing
$$\begin{cases} \left| D^{0} \right\rangle = \frac{1}{2p} \left(\left| D_{1} \right\rangle + \left| D_{2} \right\rangle \right) \\ \left| \overline{D}^{0} \right\rangle = \frac{1}{2q} \left(\left| D_{1} \right\rangle - \left| D_{2} \right\rangle \right) \\ \text{with } p^{2} + q^{2} = 1 \end{cases}$$

PRELIMINARY: $p = \left(\frac{1}{\sqrt{2}} - (-0.02 \pm 0.02)\right)e^{i(-0.03 \pm 0.04)}$

Outlook (is interesting)

- E791 and FOCUS
 - → Working on A_{CP} analyses (for example Dalitz plots).
- CLEO-c
 - → Still working on analyses using CLEO-II, II.V and III data.
 - → CLEO-c will turn on in about a year.
 - ~30 million DD events (and new A_{CP} search modes).
 - ~ 1.5 million $D_s D_s$ events
- B Factories
 - → In the next 5 (?) years Belle and BaBar will accumulate
 ~100 times the integrated luminosity that CLEO has at the Y(4S).
 - Improve on present CLEO limits by at least a factor of 10.
- Hadron Machines
 - \rightarrow CDF & D0 are getting into the game.
 - → BTeV (& LHC-b ?) could have 10^9 reconstructed charm events.
 - → COMPASS ? Others ?
- BES

Extra Slides...

Sensitivity to this will be at the $\sim 1\%$ level

$D^0 \rightarrow K^- \pi^+ \pi^0 A_{CP}$ Fits

	D^0 Sample		$\overline{D^0}$ Sample	
Component	Amplitude	Phase (degrees)	Amplitude	Phase (degrees)
$\rho(770)^+$	1.0 ± 0.0	$0^{o}({ m fixed})$	1.0 ± 0.0	$0^{\circ}(\text{fixed})$
$K^{*}(892)^{-}$	0.433 ± 0.034	168.9 ± 3.3	0.442 ± 0.015	157.8 ± 3.4
$\overline{K}^{*}(892)^{0}$	0.391 ± 0.026	1.3 ± 3.7	0.410 ± 0.022	-4.9 ± 4.9
$\rho(1700)^+$	2.590 ± 0.538	175.0 ± 7.5	2.720 ± 0.272	163.9 ± 7.6
$\overline{K}_{0}(1430)^{0}$	0.989 ± 0.124	173.9 ± 8.2	0.774 ± 0.089	159.3 ± 8.1
$K_0(1430)^-$	0.701 ± 0.211	59.0 ± 10.0	0.917 ± 0.117	55.0 ± 7.1
$K^{*}(1680)^{-}$	2.567 ± 1.540	107.4 ± 69.2	2.060 ± 0.423	106.4 ± 13.5
Non Res.	1.840 ± 0.146	39.9 ± 7.9	1.780 ± 0.160	21.3 ± 6.0
χ^2	227		233	
$-2\ln \mathcal{L}$	3237		3302	
C.L.(%)	93.1		80.7	

- E791 references:
 - → Phys. Lett. B403 (1997) 377
 - → Phys. Lett. B421 (1998) 405
- FOCUS references:
 - → Phys. Lett. B491 (2000) 232
 - → Phys. Rev. Lett. 88 (2002) 041602
- CLEO references:
 - → Phys. Rev. D63 (2001) 071101
 - → Phys. Rev. D65 (2002) 092001
 - → T. J. Bergfeld (Ph.D. Thesis, UIUC)
- Theory references:
 - → Buchella et. al., Phys. Rev. D51 (1995)
 - → Burdman hep-ph/9407378
 - → Bigi & Yamamoto, Phys. Lett B349 (1995)
 - → Lipkin & Xing, Phys. Lett B450 (1999)