

New results on $D^+ \rightarrow K \pi \mu \nu$

But a funny thing happened when we tried to measure the form factor ratios by fitting the angular distributions ...

Five observables are studied

 $H_0(q^2)$, $H_+(q^2)$, $H_-(q^2)$ are helicity-basis form factors computable by LGT

An unexpected asymmetry in the K* decay

Sounds like QM interference

Simplest approach — Try an interfering spin-0 amplitude

Since A << B, interference will dominate.. There will only be three terms as $m_{\mu} => 0$ Intrf. = $8 \cos \theta_V \sin^2 \theta_I A \operatorname{Re} \left(e^{-i\delta} B_{K^*} \right) H_0^2$ $-4(1 + \cos \theta_I) \sin \theta_I \sin \theta_V A \operatorname{Re} (B_{K^*} e^{i(\chi - \delta)}) H_+ H_0$

 $+4(1-\cos\theta_{I})\sin\theta_{I}\sin\theta_{V}A\operatorname{Re}(B_{K^{*}}e^{-i(\chi+\delta)})H_{H_{0}}H_{0}$

If we average over acoplanarity we only get the first term $8 \underline{\cos \theta_{V}} \sin^{2} \theta_{I} A \operatorname{Re}\left(e^{-i\delta}B_{K^{*}}\right) H_{0}^{2}$

This is the term that created our forward-backward asymmetry! If our model is right:

- The asymmetry will have a particular mass dependence: $\operatorname{Re}\left(e^{-i\delta}B_{\kappa^{*}}\right)$
- The asymmetry should be proportional to $sin^2\theta_1$
- The asymmetry should have a q^2 dependence given by $q^2 H_0^2(q^2)$

Studies of the acoplanarity-averaged interference

Dependence of asymmetry on $\cos\theta_{I}$ $8\cos\theta_{V}\sin^{2}\theta_{I}A\operatorname{Re}\left(e^{-i\delta}B_{K^{*}}\right)H_{0}^{2}$

We plot the asymmetry versus cos θ_l and expect a parabola in cos² θ_l since sin² θ_l = (1 - cos² θ_l)

Looks \propto - (1 - cos² θ_{l}). Some modulation due to efficiency and resolution

q² dependence of asymmetry

$$8\cos\theta_V\sin^2\theta_I A\operatorname{Re}\left(e^{-i\delta}B_{K^*}\right)H_0^2(q^2)$$

Acoplanarity dependent interference terms

The interference adds two new terms to the acoplanarity dependence.

 $-4(1+\cos\theta_{l})\sin\theta_{l}\sin\theta_{V}A\operatorname{Re}(B_{K^{*}}e^{i(\chi-\delta)})H_{+}H_{0}$ $+4(1-\cos\theta_{l})\sin\theta_{l}\sin\theta_{V}A\operatorname{Re}(B_{K^{*}}e^{-i(\chi+\delta)})H_{-}H_{0}$

Without s-wave interference, the acoplanarity terms are even in χ : Only $\cos \chi$ and $\cos 2\chi$ dependencies are present

The interference produces sin χ terms which break **c** to -c symmetry

Our first brush with $\sin \chi$ was frightening!

Interference with the new amplitude breaks χ to - χ symmetry.

When CP is handled properly, the D+ and D- acoplanarity distributions become consistent.

Under CP : D+ => D-, all 5 vectors will reverse as will sin χ under our convention. Interference produces a "false" CP violation between the acoplanarity distribution between D+ versus D-unless we explicitly take χ to $-\chi$

But surely an effect this large must have been observed before?

Although the interference *significantly* distorts the decay intensity....

...the interference is nearly invisible in the Kp mass plot.

New results on D⁺ \rightarrow K* $\mu\nu/K2\pi$ branching ratio

The CLEO result might resolve an old problem

The preliminary FOCUS result

$$\frac{\Gamma(D^+ \to \overline{K}^{*0} \mu^+ \nu)}{\Gamma(D^+ \to K^- \pi^+ \pi^+)} = 0.602 \pm 0.010 \text{ (stat)} \pm 0.021 \text{ (sys)}$$

Still under study!

We multiply muon results by 1.05 to compare to electron results

Our preliminary number is 1.59 standard deviations <u>below</u> CLEO and 2.1 standard deviations <u>above</u> E691

Summary

(1) S-wave interference in D⁺ ® Kpm of form

$$H_0\Big|^2 \left| 0.36 \exp\left(i\frac{\boldsymbol{p}}{4}\right) + \frac{\cos \boldsymbol{q}_v \sqrt{m_0 \Gamma}}{(m-m_o)^2 + im_0 \Gamma} \right|^2$$

The new amplitude is <u>small</u>: \approx 7% of BW peak amplitude in the H₀ part. \approx 6% of all K $\pi\mu\nu$ over the full K π range

(2) New results on D+ ® K*m/K2p

•CLEO value 0.74 \pm 0.04 \pm 0.05 (is higher than previous data)

• FOCUS preliminary value is $0.60 \pm 0.01 \pm 0.02$ (1.57 σ lower than CLEO)

(3) Many interesting results are on the way:

•New measurements of **D**_s⁺ **® fm/fp**

•New \mathbf{r}_{v} and \mathbf{r}_{2} form factor measurements for $\mathbf{K}^{*}\mu\nu$ and $\phi\mu\nu$

•f(q²) measurement for $D^0 \otimes Kmn$

•Cabibbo suppressed ratios: D+ ® rmm/K*mn & D⁰ ® pmm/Kmm

$\phi\mu\nu$ BR — work in progress

— data — charm background MC

Once we demand a decay out of the target segments, the backgrounds are matched by our Monte Carlo.

This is a "c,cbar" MC with events containing a $\phi\mu\nu$ decay excluded.

Work is being done on the branching ratio measurement, and I hope to work on the form factor measurement.

Perhaps we will see interference with the $f_0(980)$?

Question slides

The preliminary FOCUS result

 $\frac{\Gamma(D^+ \to \overline{K}^{*0} \mu^+ \nu)}{\Gamma(D^+ \to K^- \pi^+ \pi^+)} = 0.602 \pm 0.010 \text{ (stat)} \pm 0.021 \text{ (sys)}$

Observation of interference in D+ semileptonic decay into K* $\mu\,\nu$

- I intended to measure several semileptonic form factors as a thesis
 - D⁺ \rightarrow K^{*0} $\mu\nu$ was intended as training exercise for the more controversial D_s⁺ \rightarrow $\phi\mu\nu$
- We could *not* get good confidence level fits on K^{*0}µν, even after exhaustive checks of MC and possible backgrounds
 - Known backgrounds were small and benign (in form factor variables)
 - The Monte Carlo simulated both resolution and acceptance well.
- We then made a crucial observation that led to an explicit interference model
 - The model is described by only a single amplitude and phase
 - The model explained the discrepancies between the data and the fit.
 - And suggested numerous new places to search for interference

The decay rate via Feynman rules

• Assuming the $K\pi$ spectrum contains nothing but K*, the decay rate is straight-forward

Decay rate as an amplitude

Written as an |amplitude|², the decay rate is much more simple and intuitive:

$$\frac{d^{4}\Gamma}{dM_{K\pi}^{2} dt \, d\cos\theta_{\nu} \, d\cos\theta_{\mu}} = G_{F}^{2}|V_{cs}|^{2} \frac{3}{2(4\pi)^{5}} \frac{M_{K^{*}}}{M_{D}^{2}M_{K\pi}} \frac{M_{K^{*}}\Gamma}{(M_{K\pi}^{2} - M_{K^{*}}^{2})^{2} + M_{K^{*}}^{2}\Gamma^{2}} K[A]^{2}$$

$$= \frac{1}{8} (t - m_{l}^{2}) \begin{cases} \text{right-handed } \mu^{*} & \text{left-handed } \mu^{*} \\ (1 + \cos\theta_{l})\sin\theta_{V}e^{i\chi}H_{+} \\ -(1 - \cos\theta_{l})\sin\theta_{V}e^{-i\chi}H_{-} \\ -2\sin\theta_{l}\cos\theta_{V}H_{0} \\ Wigner \text{ D-matrices} & \text{internal sum over} \\ W \text{ polarization} \end{cases} \frac{1}{2} \cos\theta_{V}H_{1} \\ +2\cos\theta_{V}H_{1} \\ \end{bmatrix}$$

$$H_{\pm}(t) = (M_{D} + M_{K\pi})A_{1}(t) \mp 2\frac{M_{D}K}{M_{D} + M_{K\pi}}V(t) \\ H_{0}(t) = \frac{1}{2M_{K\pi}\sqrt{t}} \left[(M_{D}^{2} - M_{K\pi}^{2} - t)(M_{D} + M_{K\pi})A_{1}(t) - 4\frac{M_{D}^{2}K^{2}}{M_{D} + M_{K\pi}}A_{2}(t) \right]$$
Form factor details from Feynman calculus

Rich + detailed kinematic structure! Angular distributions are highly correlated.

A problem with K*lv form factor fits!

K*mm is supposed to have just even power terms of $\cos \theta_v$

But the data seemed to require a linear $\cos \theta_{v}$ term below the K^{*} pole and none above the pole.

We hit upon an interference explanation for a linear $\cos \theta_v$ with a dramatic mass dependence.

Did E791 see it?

BEATRICE??

BEATRICE also uses a narrow $K\pi$ mass cut, and here the slope of the residuals is 1.2 σ , in the direction of our effect. So BEATRICE seems to see a hint of this effect as well.

...but a broad resonant amplitude works just fine.

We can mimic the cosV dependence for a constant amplitude using a BW put in with a <u>relatively real phase</u>. For example use a wide width (400 MeV) and center it above the K* pole (1.1 GeV).

27

Mass dependence of this interference term

$$+4(1-\cos\theta_{I})\sin\theta_{I}\sin\theta_{V}A\operatorname{Re}(B_{K^{*}}e^{-i(\chi+\delta)})H_{H_{0}}H_{0}$$

To study the χ dependence of interference term we use a Fourier weighting of $\cos(\chi+\delta)$ and $\sin(\chi+\delta)$ of the K π mass distribution. This picks out pure interference terms that vary sinusoidally as χ and that do not change sign with $\cos \theta_v$. Given the form of the dominant term, we expect:

•cos(χ + δ) weighting will pick out the real part of the K* BW

• $sin(\chi+\delta)$ weighting will pick out the imaginary part of the K* BW

Mass dependence of the acoplanarity interference.

The data is in fair agreement with our model and resemble our naive expected shapes. Fractional error bars are large due to the smallness of the sin χ and cos χ Fourier components that are even in cos θ_v

Resolution study

- Blank out the softest pion in D→K3π and reconstruct it like a neutrino using DVFREE upstream vertex.
- Compare with "right" answer from reconstructed pion.

10000

Me<

ഗ 6000

Jo4000

2000

#

Blanking sample

Cut Variants

Split Samples

Phase of 45⁰: mass versus width of s-wave

33

Implications

Our data is consistent with an interference of the (approximate) form:

$$H_0\Big|^2 \left| 0.36 \exp\left(i\frac{\mathbf{p}}{4}\right) + \frac{\cos \mathbf{q}_v \sqrt{m_0 \Gamma}}{(m - m_o)^2 + im_0 \Gamma} \right|^2$$

The new amplitude is <u>small</u>: About 7% of the BW peak amplitude in the H_0 piece.

How would an interfering amplitude affect form factor measurements?

-in process of evaluating this but fit quality improves dramatically

-might effect the overall scale of the form factors derived from the branching fraction $K\pi\mu\nu/K2\pi$

What could be the strength of an s-wave amplitude according to theory?

-a small NR-K* interference (~10%) has been predicted by B. Bajc, S. Fajfer, R.J. Oakes, T.N. Pham (1997) hep-ph/9710422 Amundson and Rosner, Phys. Rev. D47, (1993) 1951

Will there be similar effects in other charm semileptonic or beauty semileptonic channels?

-Good question!

Cuts to eliminate non-charm backgrounds

