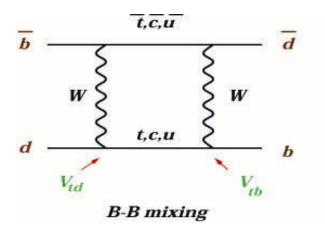
Theory of $D^0 - \overline{D^0}$ mixing

Alexey A Petrov Wayne State University

Table of Contents:

- Introduction
- Experimental constraints
- Theoretical expectations
- Conclusions and outlook

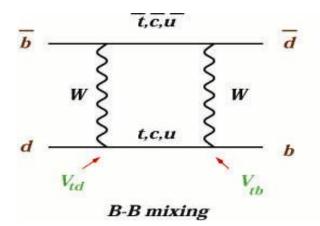
Based on works with S. Bergmann, A.F. Falk, Y. Grossman, Z. Ligeti, Y. Nir



B-mixing:

- ⇒ $\Delta Q=2$: only at one loop in the Standard Model ⇒ GIM mechanism: $rate \propto m_1^2 - m_2^2$
 - sensitive to ultra-heavy particles in the loop

Expectation: rate is "large" in B system



B-mixing:

→ $\Delta Q=2$: only at one loop in the Standard Model → GIM mechanism: $rate \propto m_1^2 - m_2^2$ sensitive to ultra-heavy particles in the loop

$$\left| B(t) \right\rangle = \left(\begin{array}{c} a(t) \\ b(t) \end{array} \right) = a(t) \left| B^{0} \right\rangle + b(t) \left| \overline{B^{0}} \right\rangle$$

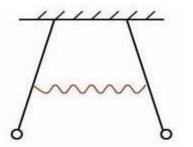
Time-dependence: coupled Schrödinger equations

$$i\frac{\partial}{\partial t}|B(t)\rangle = \left(M - \frac{i}{2}\Gamma\right)|B(t)\rangle = \left[\begin{array}{cc}A & p^{2}\\ q^{2} & A\end{array}\right]|B(t)\rangle$$

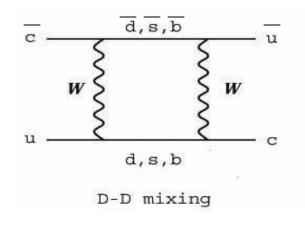
Diagonalize: mass eigenstates \neq flavor eigenstates

$$|B_{1,2}\rangle = p |B^{0}\rangle \pm q |\overline{B^{0}}\rangle$$
$$x = \frac{M_{2} - M_{1}}{\Gamma}, y = \frac{\Gamma_{2} - \Gamma_{1}}{2\Gamma}$$

FPCP 2002 May 16-18



Coupled oscillators



June

Coupled oscillators

D-mixing:

→ $\Delta Q=2$: only at one loop in the Standard Model → GIM mechanism: $rate \propto m_1^2 - m_2^2$ sensitive to ultra-heavy particles in the loop

$$\left| D(t) \right\rangle = \left(\begin{array}{c} a(t) \\ b(t) \end{array} \right) = a(t) \left| D^{0} \right\rangle + b(t) \left| \overline{D^{0}} \right\rangle$$

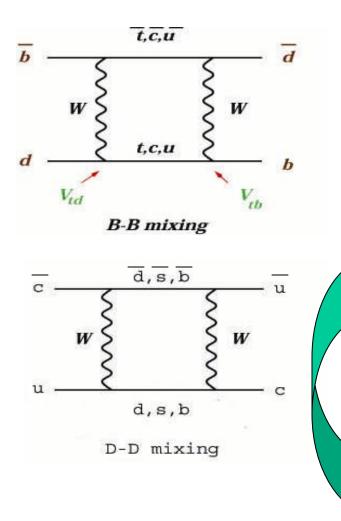
Time-dependence: coupled Schrodinger equations

$$i\frac{\partial}{\partial t}|D(t)\rangle = \left(M - \frac{i}{2}\Gamma\right)|D(t)\rangle = \left[\begin{array}{cc}A & p^{2}\\ q^{2} & A\end{array}\right]|D(t)\rangle$$

Diagonalize: mass eigenstates \neq flavor eigenstates

$$\left| D_{1,2} \right\rangle = p \left| D^{0} \right\rangle \pm q \left| \overline{D^{0}} \right\rangle$$
$$x = \frac{M_{2} - M_{1}}{\Gamma}, \ y = \frac{\Gamma_{2} - \Gamma_{1}}{2\Gamma}$$

FPCP 2002 May 16-18



B-mixing:

- ⇒ $\Delta Q=2$: only at one loop in the Standard Model ⇒ GIM mechanism: $rate \propto m_1^2 - m_2^2$
 - sensitive to ultra-heavy particles in the loop

D-mixing:

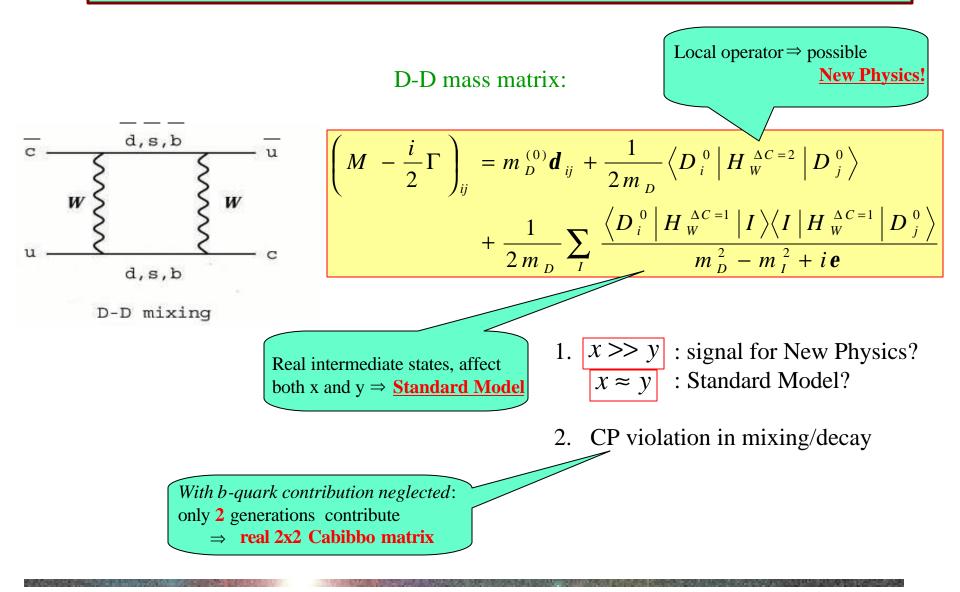
➡ the only probe of down-type quark dynamics
 ➡ GIM mechanism: no ultra-heavy quarks in the loop
 ➡ b-quark contribution ~ V_{ub} m_b^2 can be neglected

$$rate \propto f(m_s) - f(m_d) = 0$$
 (SU(3)_F limit)

very sensitive to long-distance QCD, as $m_c \sim 1 \text{ GeV}$

Clean probe of New Physics?

How would new physics affect mixing?

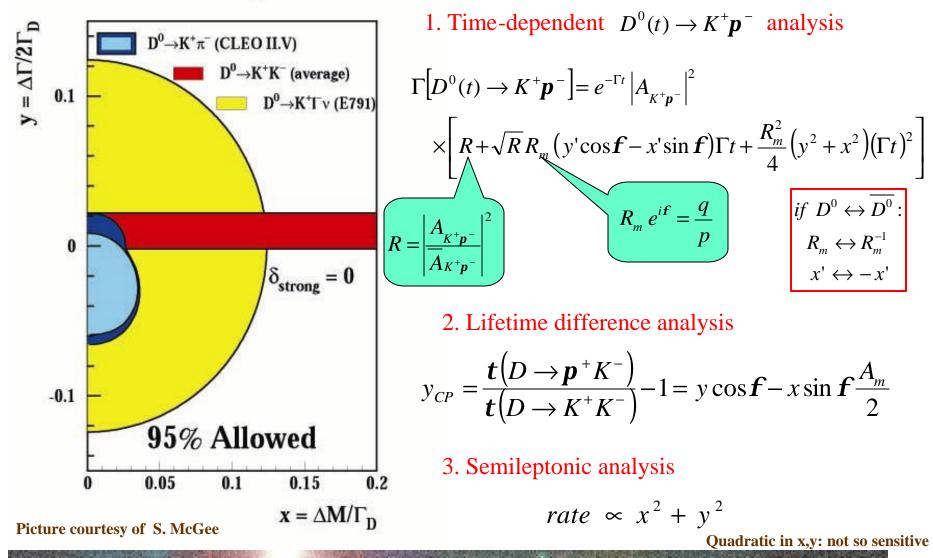


Alexey Petrov (Wayne State Univ.)

FPCP 2002 May 16-18

Experimental constraints

D^0 - \overline{D}^0 Mixing Limits

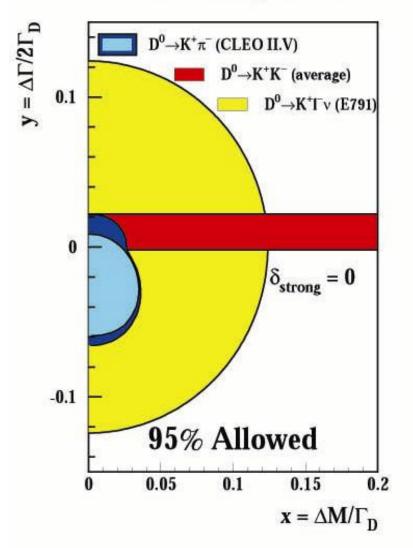


Alexey Petrov (Wayne State Univ.)

FPCP 2002 May 16-18

Experimental constraints

D^0 - \overline{D}^0 Mixing Limits

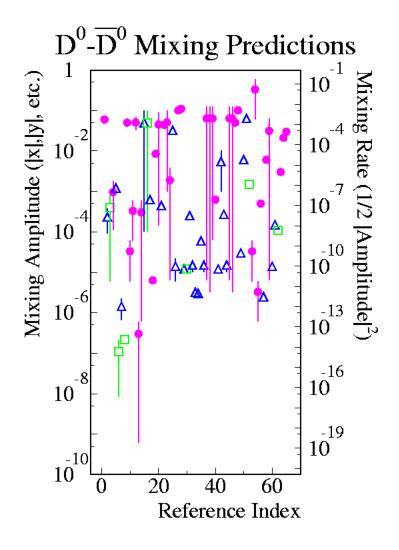


Several groups have measured y_{CP}

Experiment	Value
FOCUS (2000)	(3.42±1.39±0.74)%
E791(2001)	(0.8±2.9±1.0)%
CLEO (2002)	(-1.2±2.5±1.4)%
Belle (2002)	$(-0.5\pm1.0 \ ^{+0.7}_{-0.8})\%$
BaBar (2002)	$(1.4\pm1.0 \ ^{+0.6}_{-0.7})\%$

World average: (1.0±0.7)% G. Raz What are the expectations for x and y?

Theoretical estimates

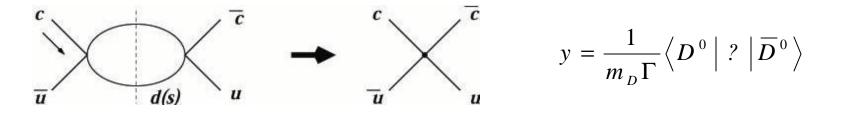


- Theoretical predictions are all over the board
- Can y ~ 1% be convincingly accommodated?
- Is it possible to have y >> x?
- Does it still mean that y ~ x?

Theoretical estimates I

A. Short distance gives a tiny contribution, consider y as an example

m_c is quite large !!!



... as can be seen form the straightforward computation...

$$y_{sd} = \frac{N_{c} + 1}{2 \mathbf{p} N_{c} \Gamma} X_{D} \frac{\left(m_{s}^{2} - m_{d}^{2}\right)^{2}}{m_{c}^{2}} \frac{m_{s}^{2} + m_{d}^{2}}{m_{c}^{2}} \left[C_{2}^{2} + 2C_{1}C_{2} + C_{1}^{2}N_{C} - \frac{2(2N_{c} - 1)}{1 + N_{c}} \frac{B_{D}^{'}}{B_{D}} \frac{M_{D}^{2}C_{2}^{2}}{(m_{c} + m_{u})^{2}} \left(1 + \left(N_{c}\frac{C_{1}^{2}}{C_{2}^{2}} + 2\frac{C_{1}}{C_{2}}\right)\frac{2 - N_{c}}{2N_{c} - 1}\right)$$

with $\langle D^{0} | \bar{u}\Gamma_{m}c \ \bar{u}\Gamma^{m}c | D^{0} \rangle = \frac{1 + N_{c}}{N} \frac{4F_{D}^{2}m_{D}^{2}}{2m} B_{D}, etc.$ 4 unknown matrix elements

 N_{C}

 $2 m_{D}$

similar for x (trust me!)

Alexey Petrov (Wayne State Univ.)

FPCP 2002 May 16-18

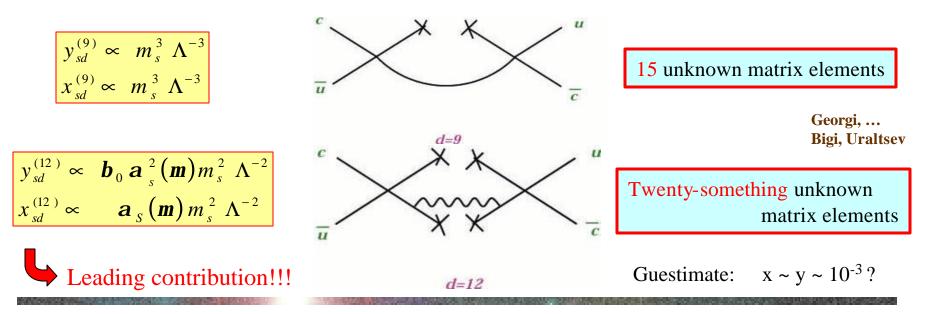
Theoretical estimates I

A. Short distance + "subleading corrections" (in $1/m_c$ expansion):

$$y_{sd}^{(6)} \propto \frac{\left(m_{s}^{2} - m_{d}^{2}\right)^{2}}{m_{c}^{2}} \frac{m_{s}^{2} + m_{d}^{2}}{m_{c}^{2}} \mathbf{m}_{had}^{-2} \propto m_{s}^{6} \Lambda^{-6}$$
$$x_{sd}^{(6)} \propto \frac{\left(m_{s}^{2} - m_{d}^{2}\right)^{2}}{m_{c}^{2}} \mathbf{m}_{had}^{-2} \propto m_{s}^{4} \Lambda^{-4}$$

4 unknown matrix elements

... subleading effects?



FPCP 2002 May 16-18

Resume: model-independent computation with <u>model-dependent</u> result

Theoretical estimates II

B. Long distance might give a large result? Let's see...

m_c is NOT large !!!

$$y = \frac{1}{2\Gamma} \sum_{n} \mathbf{r}_{n} \left[\left\langle D^{0} \left| H_{W}^{\Delta C=1} \left| n \right\rangle \left\langle n \left| H_{W}^{\Delta C=1} \right| \overline{D}^{0} \right\rangle + \left\langle \overline{D}^{0} \left| H_{W}^{\Delta C=1} \left| n \right\rangle \left\langle n \left| H_{W}^{\Delta C=1} \right| D^{0} \right\rangle \right] \right] \right]$$

... with n being all states to which D^0 and \overline{D}^0 can decay. Consider $\pi\pi$, πK , KK intermediate states as an example...

$$y_{2} = Br\left(D^{0} \rightarrow K^{+}K^{-}\right) + Br\left(D^{0} \rightarrow p^{+}p^{-}\right)$$
$$- 2\cos d \sqrt{Br\left(D^{0} \rightarrow K^{+}p^{-}\right)}Br\left(D^{0} \rightarrow p^{+}K^{-}\right)$$

cancellation expected!

If every Br is known up to O(1%) \implies the result is expected to be O(1%)!

The result here is a series of large numbers with alternating signs, SU(3) forces 0

x = ? Extremely hard...

need to restructure the calculation...

Resume: model-dependent computation with model-dependent result

Questions:

1. Can any model-independent statements be made for *x* or *y* ?

What is the order of SU(3) breaking? i.e. if $x, y \propto m_s^n$ what is n?

2. Can one claim that $y \sim 1\%$ is natural?

At which order in $SU(3)_F$ breaking does the effect occur? Group theory?

$$\left\langle D^{0} \mid H_{W} H_{W} \mid \overline{D}^{0} \right\rangle \Rightarrow \left\langle 0 \mid D H_{W} H_{W} \mid D \mid 0 \right\rangle$$

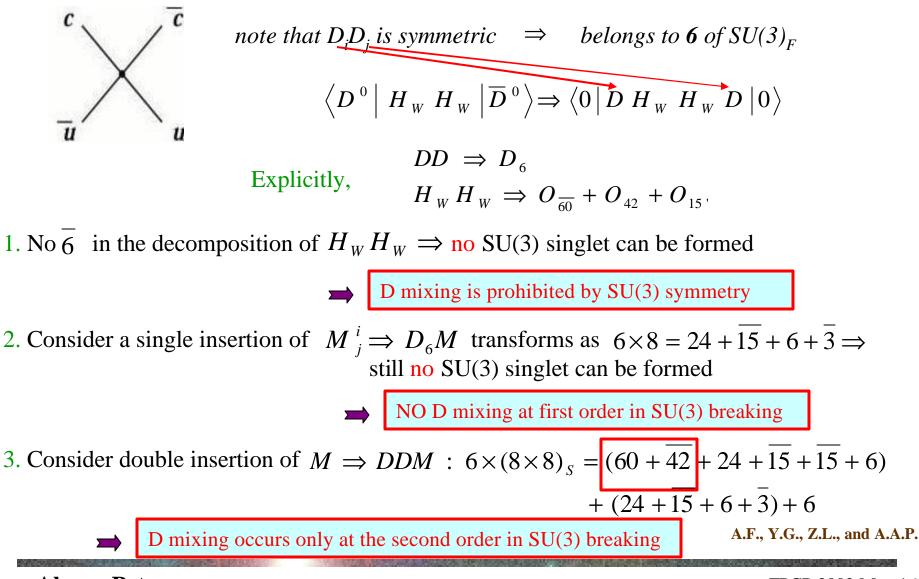
is a singlet with $D \rightarrow D_i$ that belongs to **3** of $SU(3)_F$ (one light quark)

The
$$\Delta C=1$$
 part of H_W is $(\overline{q}_i c)(\overline{q}_j q_k)$, *i.e.* $3 \times \overline{3} \times \overline{3} = \overline{15} + 6 + \overline{3} + \overline{3} \Rightarrow H_k^{ij}$
 $O_{\overline{15}} = (\overline{sd})(\overline{ud}) + (\overline{uc})(\overline{sd}) + s_1(\overline{dc})(\overline{ud}) + s_1(\overline{uc})(\overline{dd})$
 $- s_1(\overline{sc})(\overline{us}) - s_1(\overline{uc})(\overline{ss}) - s_1^2(\overline{dc})(\overline{us}) - s_1^2(\overline{uc})(\overline{ds})$
 $O_6 = (\overline{sd})(\overline{ud}) - (\overline{uc})(\overline{sd}) + s_1(\overline{dc})(\overline{ud}) - s_1(\overline{uc})(\overline{dd})$
 $- s_1(\overline{sc})(\overline{us}) + s_1(\overline{uc})(\overline{ss}) - s_1^2(\overline{dc})(\overline{us}) + s_1^2(\overline{uc})(\overline{ds})$

Introduce SU(3) breaking via the quark mass operator $M_{j}^{i} = diag (m_{u}, m_{d}, m_{s})$

All nonzero matrix elements built of D_i , H_k^{ij} , M_j^i must be SU(3) singlets

11



Alexey Petrov (Wayne State Univ.)

FPCP 2002 May 16-18

• Does it always work? SU(3) breaking must enter perturbatively...

$$A_i = A_{SU(3)} + \boldsymbol{d}_i$$

• Known counter-examples:

1. Very narrow light quark resonance with $m_R \sim m_D$

$$x, y \sim \frac{g_{DR}^2}{m_D^2 - m_R^2} \sim \frac{g_{DR}^2}{m_D^2 - m_0^2 - 2m_0 \boldsymbol{d}_R}$$

Most probably don't exists...

see E.Golowich and A.A.P.

2. Part of the multiplet is kinematically forbidden

Example: both $D^0 \rightarrow 4\mathbf{p}$ and $D^0 \rightarrow 4K$ are from the same multiplet, but the latter is kinematically forbidden

see A.F., Y.G., Z.L., and A.A.P.

• Two major sources of SU(3) breaking

1. phase space

$$m_K \neq m_p \neq m_h \dots$$

2a. matrix elements (absolute value)

$$f_K \neq f_p \dots$$

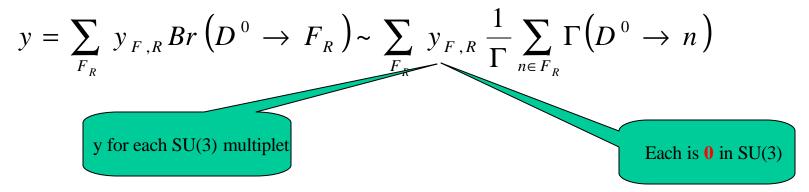
2b. matrix elements (phases aka FSI)

$$\operatorname{Im} \frac{A(D^{0} \to K^{+} \boldsymbol{p}^{-})}{A(\overline{D}^{0} \to K^{+} \boldsymbol{p}^{-})} \neq 0$$

Take into account only the first source (computable)!

SU(3) and phase space

• "Repackage" the analysis: look at the complete multiplet contribution



• Does it help? If only phase space is taken into account: no (mild) model dependence

$$y_{F,R} = \frac{\sum_{n \in F_R} \left\langle \overline{D}^0 \left| H_W \left| n \right\rangle \mathbf{r}_n \left\langle n \left| H_W \right| D^0 \right\rangle \right.}{\sum_{n \in F_R} \left\langle D^0 \left| H_W \left| n \right\rangle \mathbf{r}_n \left\langle n \left| H_W \right| D^0 \right\rangle \right.}$$

if CP is conserved
$$= \frac{\sum_{n \in F_R} \left\langle \overline{D}^0 \left| H_W \left| n \right\rangle \mathbf{r}_n \left\langle n \left| H_W \right| D^0 \right\rangle \right.}{\sum_{n \in F_R} \Gamma(D^0 \to n)}$$

Can consistently compute !

Results

Final state repr	esentation	$y_{F,R}/s_1^2$	$y_{F,R}$ (%)
PP	8	-0.0038	-0.018
	27	-0.00071	-0.0034
PV	8s	0.031	0.15
	84	0.032	0.15
	10	0.020	0.10
	10	0.016	0.08
	27	0.040	0.19
(VV)s-wave	8	-0.081	-0.39
	27	-0.061	-0.30
(VV) _{p-wave}	8	-0.10	-0.48
	27	-0.14	-0.70
(VV) _{d-wave}	8	0.51	2.5
	27	0.57	2.8

Final state represe	ntation	$y_{F,R} / s_1^2$	$y_{F,B}$ (%)
(3P)s-wave	8	-0.48	-2.3
	27	-0.11	-0.54
$(3P)_{p-wave}$	8	-1.13	-5.5
	27	-0.07	-0.36
$(3P)_{ m form-factor}$	8	-0.44	-2.1
	27	-0.13	-0.64
4P	8	3.3	16
	27	2.2	9.2
	27'	1.9	11

- Product is naturally O(1%)
- No (symmetry-enforced) cancellations
- Does NOT occur for x

naturally implies that $y \sim 1\%$ and x < y !

Final state	fraction
PP	5%
PV	10%
(VV)s-wave	5%
(VV) _{d-wave}	5%
3P	5%
4P	10%

Conclusions

- x,y=0 in the SU(3) limit (as V_{ub} is very small)
- it is a second order effect
- it is quite possible that $y \sim 1\%$ with x < y

if true, search for New Physics is complicated

- expect new data from BaBar/Belle/CLEO/CLEOc/CDF(?)
- currently: $x \approx (\pm 2.8 \pm 2.5)\%$, $y \approx (\pm 0.9 \pm 3.6)\%$ (allowing NP)
- CP-violation in mixing is a "smoking gun" signal for New Physics