

Exploring the Universe with Gamma-Rays: Recent Results from Fermi

Brian L. Winer

Department of Physics Center for Cosmology and Astroparticle Physics The Ohio State University

Representing the Fermi LAT Collaboration

Snaray Large Area Space Telescope

Across the EM Spectrum

Wavelength

Note: degrees Kelvin (K) = degrees Ce

Crab Nebula: Remnant of an Exploded Star (Supernova)

WMAP CMB - 5 year Map

Crab Nebula: Supernova remanent with a pulsar, approximately 6,500 ly from earth. SN recorded by Chinese 1054

Radio wave (VLA)

Ultraviolet radiation (Astro-1)

Infrared radiation (Spitzer)

Low-energy X-ray (Chandra)

Visible light (Hubble)

High-energy X-ray (HEFT) *** 15 min exposure ***

Brian L Winer

Tuesday, April 26, 2011

University of Pennsylvania Apr 26, 2011

Shortest Wavelengths in EM Spectrum → Highest Energy.

- ★ Energies from 100's keV and higher
- ★ Probe the most energetic phenomena:
 - Active Galactic Nuclei
 - Supernova Remnants
 - Pulsars
 - Gamma-Ray Bursts
- Point Back to source
- Detect 1 at a time.
 - ★ More "particle-like"
- Universe transparent...to a point

Where to go?

NASA Image

Brian L Winer

Space vs Ground Based

Space based observatories

Vela Series 1960's 3 - 750 keV

SAS-2 1975 - 1982 20 MeV - 1 GeV

COS-B 1975 - 1982 2 keV - 5 GeV

Compton Gamma-Ray Observatory 1991 - 2000

Fermi Gamma Ray Space Telescope 2008 - ?

Brian L Winer

7

Tuesday, April 26, 2011

Brian L Winer

Brian L Winer

Brian L Winer

Brian L Winer

Brian L Winer

9

Tuesday, April 26, 2011

Brian L Winer

Anti-Coincidence Detector ≻4% R.L. ≻89 scintillating tiles

>efficiency (>0.9997) for MIPs

Brian L Winer

9

Tuesday, April 26, 2011

Brian L Winer

Brian L Winer

Views from the Beach

Tuesday, April 26, 2011

Launch of Fermi

Very Successful Launch!

• Orbit:

- ★ Altitude: 565 km
- ★ Inclination: 25.6 deg
- ★ Period: ~90 min
- Turn off through SAA
- Lifetime: 5 years min.
 - ★ No expendable

Operational Modes

Sky Survey Mode

- ★ Typical Mode of operation
- ★ View full sky every 2 orbits
- * "Rocking" Mode (up/down)

Targets of Opportunity *Autonomous Repoint (GRBs) *Slew to keep ToO in FOV *Later years: ToO Proposals

LAT: Wide Field of View ~2.4 sr

GBM: See almost all of the sky not occulted by the earth

On orbit rates in nominal configuration

~1.5 hours

Note: Rates from Early Running

- Overall trigger rate: ~few KHz
 ✓ Substantial variations due to orbital effects
- Downlink rate: ~400—500 Hz
 ~90% from GAMMA filter
 ~20—30 Hz from DGN filter
 ~5 Hz from HIP filter
- Rate of photons after the standard background rejection cuts for source study: ~1 Hz
 - ✓ Most of the downlinked events are in fact background, final 100:1 rejection is done in ground processing.

LAT Gamma Candidate Events

Brian L Winer

Detector Performance

Brian L Winer

Apr 26, 2011

Brian L Winer

17

University of Pennsylvania

The Gamma Ray Sky

All Sky First Light Data: Few Days of Data A REAL PROPERTY OF THE OWNER OF T

Brian L Winer

Brian L Winer

Animation of 3 month Data Set

- 87 day animation, starting August 4
- pixel size 0.5 deg in center
- |b|>1.0

The Earth, the Sun, and the Moon

Brian L Winer

19

University of Pennsylvania Apr 26, 2011

Tuesday, April 26, 2011

Brian L Winer

Features of the Sky

Brian L Winer

Sources:

- Galactic and Extra-Galactic

Brian L Winer

Sources:

- Galactic and Extra-Galactic
- -"Constant"

Sources:

- Galactic and Extra-Galactic
- -"Constant"
- -Variable

- Galactic and Extra-Galactic
- -"Constant"
- -Variable
 - -Regularity (Pulsars)

- Galactic and Extra-Galactic
- -"Constant"

-Variable

- -Regularity (Pulsars)
- -Flaring (AGN)

- Galactic and Extra-Galactic
- -"Constant"
- -Variable
 - -Regularity (Pulsars)
 - -Flaring (AGN)
- -Transient:

Brian L Winer

- Galactic and Extra-Galactic
- -"Constant"
- -Variable
 - -Regularity (Pulsars)
 - -Flaring (AGN)
- -Transient:
 - -One time events (GRBs)

Brian L Winer

-"Constant"

-Variable

- -Regularity (Pulsars)
- -Flaring (AGN)
- -Transient:
 - -One time events (GRBs)

Brian L Winer

Brian L Winer

Sources:

- Galactic and Extra-Galactic
- -"Constant"
- -Variable
 - -Regularity (Pulsars)
 - -Flaring (AGN)
- -Transient:
 - -One time events (GRBs)

Diffuse Emission:

- Galactic and Extra-Galactic

Brian L Winer

Sources:

- Galactic and Extra-Galactic
- -"Constant"
- -Variable
 - -Regularity (Pulsars)
 - -Flaring (AGN)
- -Transient:
 - -One time events (GRBs)

Diffuse Emission:

- Galactic and Extra-Galactic
- Cosmic-ray Interaction with

Brian L Winer

Sources:

- Galactic and Extra-Galactic
- -"Constant"
- -Variable
 - -Regularity (Pulsars)
 - -Flaring (AGN)
- -Transient:
 - -One time events (GRBs)

Diffuse Emission:

- Galactic and Extra-Galactic
- Cosmic-ray Interaction with
 - material (dust, gas)

Sources:

- Galactic and Extra-Galactic
- -"Constant"
- -Variable
 - -Regularity (Pulsars)
 - -Flaring (AGN)
- -Transient:
 - -One time events (GRBs)

Diffuse Emission:

- Galactic and Extra-Galactic
- Cosmic-ray Interaction with
 - material (dust, gas)
 - interstellar radiation field

- Galactic and Extra-Galactic
- -"Constant"
- -Variable
 - -Regularity (Pulsars)
 - -Flaring (AGN)
- -Transient:
 - -One time events (GRBs)

Diffuse Emission:

- Galactic and Extra-Galactic
- Cosmic-ray Interaction with
 - material (dust, gas)
 - interstellar radiation field
- Dark Matter Annihilation or decay???

Fermi Science

Brian L Winer

21

University of Pennsylvania Apr 26, 2011

The Dark Side...

- The universe seems to be composed of ~23% dark matter.
- Candidate: Weakly Interacting Massive Particle
- WIMP might decay or self-annihilate
- Could lead to gamma-rays.

University of Pennsylvania

Chandra/Hubble

Apr 26, 2011

WIMP Annihilation

Spectral shape & flux magnitude

Milky Way Halo simulated by Taylor & Babul (2005)

All-sky map of DM gamma ray emission (Baltz 2006)

Milky Way Halo simulated by Taylor & Babul (2005)

All-sky map of DM gamma ray emission (Baltz 2006)

Challenge: Need to account for all the gamma-rays from non-DM sources

Diffuse Gamma-Ray Background

Tuesday, April 26, 2011

- Highest Flux of γ-rays from DM
- Challenge: Understand Astrophysical Bkgs
 - Source confusion
 - * Energetic Sources
 - * Diffuse Emission along line of sight.
- Analysis Approach: (arXiv 0912.3828)
 - * 7 x 7 region around GC
 - * 11 months of data (front converting)
 - * E>400 MeV

- Highest Flux of γ-rays from DM
- Challenge: Understand Astrophysical Bkgs
 - Source confusion
 - Energetic Sources
 - * Diffuse Emission along line of sight.
- Analysis Approach: (arXiv 0912.3828)
 - * 7 x 7 region around GC
 - * 11 months of data (front converting)
 - * E>400 MeV

- Highest Flux of γ-rays from DM
- Challenge: Understand Astrophysical Bkgs
 - Source confusion
 - Energetic Sources
 - * Diffuse Emission along line of sight.
- Analysis Approach: (arXiv 0912.3828)
 - * 7 x 7 region around GC
 - * 11 months of data (front converting)
 - * E>400 MeV

- Highest Flux of γ-rays from DM
- Challenge: Understand Astrophysical Bkgs
 - ★ Source confusion
 - Energetic Sources
 - Diffuse Emission along line of sight. \star
- Analysis Approach: (arXiv 0912.3828)
 - * 7 x 7 region around GC
 - * 11 months of data (front converting)
 - E>400 MeV \star

 10^{3}

Brian L Winer

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

(counts- model) / model

Shape Comparison

- Highest Flux of γ-rays from DM
- Challenge: Understand Astrophysical Bkgs
 - Source confusion
 - **Energetic Sources**
 - Diffuse Emission along line of sight. \star
- Analysis Approach: (arXiv 0912.3828)
 - 7 x 7 region around GC
 - 11 months of data (front converting)
 - E>400 MeV \star

 10^{3}

Brian L Winer

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

(counts- model) / model

quantifying them.

Energy (MeV)

 10^{4}

dSphs are excellent DM targets of opportunity.

- ★ N-Body DM Simulation predicts large clumps that support star formation.
- ★ Very high Mass/Light Ratio (Dark Matter dominated)
- ★ Low content of gas and dust (low astrophysical gamma-ray sources)
- ★ Many close by (<100 kpc)

Consider the 14 targets for Fermi (e.g. high gal. lat.)

Astrophys. J. **712**, 147 (2010) **arXiv preprint:** 1001.4531

- 11 month data set
- 100 MeV < E < 50 GeV
- dSph will be point-like.
- Backgrounds

 Existing point-like sources
 Galactic Diffuse

- No excess of events was detected for any of the dSph.
- Set 95% CL upper limits on flux from the sample.
- For 8 of the 14, the flux limits are combined with DM density inferred from stellar data(*) to constrain dark matter models.
- Beginning to constrain some models.
- Current work is focused on "stacking" the dSph galaxies to make use of their combined statistical power.

(*) stellar data from the Keck observatory (by Martinez, Bullock, Kaplinghat)

Searching for Dark Matter Gamma Ray Lines

Brian L Winer

Final State $\gamma \gamma \rightarrow E_{\gamma} = M_{DM}$

Final State $\gamma Z \rightarrow E_{\gamma} = M_{DM} - \frac{M_Z^2}{4M_{DM}}$

- 23 month data sample
- Signal Model is line smeared by LAT response function.
- Background is power-law fit to side-bands
- Search Region:
 - |b|>10° and 20° x 20° around GC
- Remove sources (|b|>1°).

Brian L Winer

University of Pennsylvania Apr 26, 2011

- 23 month data sample
- Signal Model is line smeared by LAT response function.
- Background is power-law fit to side-bands
- Search Region:
 - |b|>10° and 20° x 20° around GC
- Remove sources (|b|>1°).

Brian L Winer

University of Pennsylvania Apr 26, 2011

Fermi detects more than just gamma-rays.

One of the best cosmic ray electron observatories

Spectral Features:

- ★ ATIC excess around 600 GeV
- ★ H.E.S.S possible cutoff around 1 TeV
- Pamela shows excess in positron fraction
- Lots of interest soon after launch.
- Fermi LAT is an excellent electron/positron detector.

⇒ Nearby sources expected ? astrophysical or exotic origin ?

Electrons and Hadrons With Fermi

Electron candidate

- few ACD tile hits in conjunction with the track
- clean main track with extra-clusters very close to the track - note backsplash from the calorimeter
- well defined symmetric shower in the calorimeter, not fully contained

Hadron candidate

large energy deposit per ACD tile

 small number of extra clusters around main track, large number of clusters away from the track

 large and asymmetric shower profile in the calorimeter

LAT does not distinguish electrons from positrons

★ For what follows: "electrons" means both

• All events with E > 20 GeV are sent to the ground.

⇒ hereafter, electrons will mean *electrons*+positrons

Brian L Winer

36

Search for Anisotropies of CRE

90 95 100 105 110 115 120 125 130 Number of Events

Phy Rev D82, 092003 (2010)

- Expect CRE to be isotropic due to GMF.
- Perform search for Anisotropies for CRE
 - E>60, 120, 240, 480 GeV
- Performed a power spectrum analysis
- No Anisotropies are observed.

Search for Anisotropies of CRE

315 270

-30

-30

-60

+0

+90

-90

- Expect CRE to be isotropic due to GMF.
- Perform search for Anisotropies for CRE
 - E>60, 120, 240, 480 GeV
- Performed a power spectrum analysis
- No Anisotropies are observed.

-2

University of Pennsylvania Apr 26, 2011

Deviation from Expected

Significance (σ)

Tuesday, April 26, 2011

Limits on Anisotropies of CRE

Brian L Winer

38

University of Pennsylvania Apr 26, 2011

 10^{3}

10⁴

Tuesday, April 26, 2011

Limits on Anisotropies of CRE

Brian L Winer

University of Pennsylvania Apr 26, 2011

 10^{3}

10⁴

Tuesday, April 26, 2011

Gamma-ray Bursts

Apr 26, 2011

Brian L Winer

39

Tuesday, April 26, 2011

Gamma Ray Bursts

- Gamma Ray Bursts were seen with the earliest satellites.
- CGRO studies in detail.
 - Isotropic --> Extragalactic
- redshift measurement 1997
- Very Energetic
 - Beamed: E ~ 10⁴⁴ J
- Seem to be of two types
 - Long/Short Duration.

Gamma Ray Bursts

Apr 26, 2011

- Gamma Ray Bursts were seen with the earliest satellites.
- CGRO studies in detail.
 - Isotropic --> Extragalactic
- redshift measurement 1997
- Very Energetic
 - Beamed: E ~ 10⁴⁴ J
- Seem to be of two types
 - Long/Short Duration.

Gamma-Ray Bursts (GRBs): The Long and Short of It

University of Pennsylvania

Brian L Winer

40

Estimate: 1/galaxy/million years

- Quantum Gravity could distort space at very small scales.
- Some Quantum Gravity Models predict that this distortion of space could lead to:
 - Lorentz Invariance Violation (LIV)
 - * a.k.a: speed of light that is not constant.
 - * a.k.a: Speed that depends on wavelength (energy) of the light
- Very Small Effect...need:
 - Source with a short pulse
 - Emits light over a wide range of high energies
 - ⋆ Very Far Away.

A Gamma Ray Burst with:

*A short emission time*High and Low Energy Gamma Rays*A measured Redshift (i.e. Distance)

Basic Idea

GRB090510

- GRB090510: Short GRB w/ HE Photons
 - * After glow measured
 - ★ z = 0.903 +/- 0.003
- Short Pulses
 - Observed in the GBM and LAT
- High Energy Gamma 31 GeV
 - ∗ 1*σ* Range: 27.97 36.32 GeV
 - $\star\,$ Associated with GRB at 5 $\sigma\,$
- Limits on QG:
 - \star Assume 1st Pulse: $\xi_1 > 1.19$
 - \star Analyze all HE: $\xi_1 > 1.2$
 - * Later Pulses: $\xi_1^{530ms} > 3.42$ $\xi_1^{630ms} > 5.12$ $\xi_1^{730ms} > 10.0$

Conclusions:

- * Strictest limits (n=1) ever placed on LIV by an order of magnitude
- * Most QG Models have have $M_{QG,n} < M_{Planck}$ ($\xi_n < 1.0$). Most conservative limits give limits above the Planck Energy

Summary

- Fermi has been working very well and carrying out a wide variety of astrophysical measurements.
- Multi-pronged Searches for Dark Matter WIMPs
 Number of challenging topics still under study.
- Tests of fundamental physics (LIV)
- Fermi is a great detector of cosmic ray electrons/ positrons.
- We are ~2-3 years into a 5-10 year mission.

Summary

- Fermi has been working very well and carrying out a wide variety of astrophysical measurements.
- Multi-pronged Searches for Dark Matter WIMPs
 Number of challenging topics still under study.
- Tests of fundamental physics (LIV)
- Fermi is a great detector of cosmic ray electrons/ positrons.
- We are ~2-3 years into a 5-10 year mission.
 Hopefully most exciting results still to come!