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<o ermi Across the EM Spectrum :

Electromagnetic Spectrum

Visible Light Fermi LAT 1-year sky survey

Temperature

1 100
degree K degrees K

10 million 10 billion
degrees K degrees K

Radio Waves | Microwaves Infared Ultraviolet X-Rays Gamma Rays
1.0 10 10 10 0.001
kilometer millimeter micrometer nanometer nanometer
Wavelength Note: degrees Kelvin (K) = degrees Ce

Crab Nebula: Remnant of an Exploded Star (Supernova)

Radio wave (VLA) Infrared radiation (Spitzer) Visible light (Hubble)

WMAP CMB - 5 year Map

Crab Nebula: Supernova remanent with

a pulsar, approximately 6,500 ly from ' et

earth. SN recorded by Chinese 1054

Ultraviolet radiation (Astro-1) Low-energy X-ray (Chandra) High-energy X-ray (HEFT)
*** 15 min exposure ***
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Y Gamma Rays ;

 Shortest Wavelengths in EM
Spectrum =—» Highest Energy.
* Energies from 100’s keV and higher

* Probe the most energetic phenomena:
+ Active Galactic Nuclei
+ Supernova Remnants

+ Pulsars
* g,f mma- SAav R

10

Opacity (Salamon & Stecker, 1998)

with metallicity correction

= opaque T s

' E, (GeV)

No significant attenuation below ~10 GeV.
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“oermi Where to go? ;

Atmospheric
Opacity
O,
3
=
1

Gammaray
! T ! ! T ‘\b/’]J’l\\

SL\)((‘ Tdcs(ow
O01tnrm 1nm 10nm 100nm 1um 10 pm 100 um 1 mm cm

Wavelength

Most of the
Visible Light Long-wavelength

bservable
Gamma Rays, X-Rays and Ultraviolet = absorbed by Ay
Light blocked by the upper atmosphere mf:::' atmospheric blocked.

(best observed from space). SRR, gass:vs e(db“t

distortion. oo e

NASA Image
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A
el Space vs Ground Based TAT

e Ground Based Observations
*x Energy: > 100’s GeV (Esp. > 1T
* Use the Atmo

e Space Based Observations

*x Energy: 100’s keV -- 100’s

Atmosphere: |/

5 sigma, 50 hours, > 10 events
 EGRET ] o
/ =
:\ ‘\‘ Crab Nebula ] S Q
~ 107 CELESTE, _ i o)
| . STACEE en
= >
= a0 | “a | l —
S 10k MILAGRO: l
o - L ]
G : MAGIC :
g 10y ~ ARGO ;
s Whipple .
2 107k .
= : VERITAS — 7~
10713 _ Air shower experiments
3 Cerenkov detectors in operation > ' ‘4 ' . !
Past experiments HEGRA  HESS S =
10 10° 10’ 10° 10° 10*
Photon Energy (GeV) HAWC E R I TAS
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o erni Space based observatories .

- COS-B

Vela Series \ S 1975 - 1982

1960’
3 - 750 ie\/ 1975 - 1982 2 keV -5 GeV
20 MeV -1 GeV

Compton Gamma-Ray Observatory Fermi Gamma Ray Space Telescope

1991 - 2000 2008 - ?
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il - OHIC
Barinl Fermi Telescope :

.
Space Telescope

Brian L Winer 7 University of Pennsylvania  Apr 26, 2011

Tuesday, April 26, 2011




Va

ol . VIO
i Fermi Telescope :
A'/ﬁ& ~1.8m._
" ~€>>
~1lm
Large Area Telescope (LAT)
- N * High Energy Gamma Rays
.» *20 MeV > E > ~300 GeV
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oot Fermi Telescope :

S:o(c Tclcscccc

Large Area Telescope (LAT)
* High Energy Gamma Rays
*20 MeV > E > ~300 GeV

Spacecraft
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e Fermi Telescope :

Large Area Telescope (LAT)
* High Energy Gamma Rays
*20 MeV > E > ~300 GeV

Spacecraft

Gamma-Ray Burst Monitor
* GRB Detection.
* 10 keV < E <40 MeV
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~ Calorimeter
(energy measurement)

TV wwsaR ww wilpes wwwwws v ow

-~

lcngths (Review of Particle Propcmcs Apnl 1980 cdmon)

A
o : &)
<o ermi Detection Strategy :
GBM Sensitivity LAT Sensitivity
* High Energy Gamma tend to pair produce -
300 C I 4010
06—
f | Pair - 0.08
:g 0.4} —0.06 5:
¢ M\ lompton 2006
) Pair-Conversion Telescope § 02t e
i = Photo-electric .
! Anticoincidence °w'“"‘=‘i' : b
':' " Detector (background) 1 10 100 1000
| E (MeV)

T RRAW WIEA AWEAZANEL B34 EAMEIMALENSAR

—Conversion Foil

“Particle Tracking
Detectors

Pair Conversion Approach
*\/eto Charge Particle Background
* Make gamma convert.
* Reconstruct directions o
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Fermi Large Area Telescope (LAT)

A
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—.  Fermi Large Area Telescope (LAT) |

' Soace Telescope
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—.  Fermi Large Area Telescope (LAT) |

' Soace Telescope

>4% R.L.
>89 scintillating ti
> effici

1.8 m ' - / Anti-Coincidence Detector
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—.  Fermi Large Area Telescope (LAT) ¢

i
/

' -
a

- a
- —

1.8 m : - Anti-Coincidence Detector
- : / >4% R.L.
t = A >89 scintillating til
E; > effici

Tracking detector
»16 tungsten foils

(12x3%R.L.,4x18%R. L )
>18 palrs of silicon strip :
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v . Fermi

P Sen T oo

Large Area Telescope (LAT) [

1.8 m

,
3355 LYy
- .

/ >4% R.L.
»89 scintillating tiles

Anti-Coincidence Detector

> efficie

Tracking detector

»>16 tungsten foils
(12x3%R.L.,4x18%R.L.)

>18 palrs of silicon strip an

Calorimeter
~> 8.5 radiation Iengths
»>8 layers cesium i
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s erml

Spece Tlascoy

Fermi Large Area Telescope (LAT) [¢

1.8 m ,' —

- .

Trigger

»Overall HW Trigger Rate ~few KHz

»Software Filters Reduce Rate
»Downlink:

~400-50

/ >4% R.L.
»89 scintillating tiles

Anti-Coincidence Detector

> efficien

Tracking detector

»>16 tungsten foils
(12x3%R.L.,4x18%R.L.)

>18 pairs of silicon strip arra,

Calorimeter
~> 8.5 radiation lengths
»>8 layers cesmm iodide logs
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- OHIO
Views from the Beach SAIE
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o crmi Launch of Fermi .

4 S,"h_l Telesc pe

e VVery Successful Launch!
e Orbit:

* Altitude: 565 km
* |nclination: 25.6 deg

* Period: ~90 min

SAA mapping (TKR Low Rate Science counters)
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A~ : OO
hermi Operational Modes :

e Sky Survey Mode

* Typical Mode of operation
* View full sky every 2 orbits
* “Rocking” Mode (up/down)

e Targets

100 Sec 1 Day

1 Orbit 1 Year

) >
Flux > 100 MeV ( phot cm?s™)

LAT: Wide Field of View ~2.4 sr

GBM: See almost all of the sky
not occulted by the earth

Brian L Winer 13 University of Pennsylvania  Apr 26, 2011

Tuesday, April 26, 2011



“source” y selection ’
1

te M)
-‘_
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A~
>ermi On orbit rates in nominal configuration ;
: ~1:5 hours R Note: Rates from Early Running
"'M”\\ Trigger v s | 4+ Overall trigger rate: ~few KHz
v Substantial variations due to
2500 Hz TN orbital effects
..\ vw/{_, \ -
* : : ; 4 Downlink rate: ~400—500 Hz
Lo, v ~90% from GAMMA filter
‘\‘"”'f‘«x‘.& Sent to ground v' ~20—30 Hz from DGN filter
\ " v’ ~5 Hz from HIP filter
' 500 Hz ,,.v‘-’w"“"“»,'.
Z :U Av’v‘ “‘
P \ < - \s’
\I‘.. \P\ i/
g + Rate of photons after the
standard background rejection cuts
for source study: ~1 Hz

v Most of the downlinked events
are in fact background, final 100:1
rejection is done in ground
processing.
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LAT Gamma Candidate Events %’

UNIVERSITY
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Detector Performance

PSF P6_V3_DIFFUSE for normal incidence
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nermi The Gamma Ray Sky QAT
Y el -
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y i The Gamma Ray Sky

P e T alsscon

B

All Sky First Light Data: Few Days of Data
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s ermi The Gamma Ray Sky

L

All Sky View: First Year of Data
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06—-AUG—2008

e 87 day animation, starting August 4
* pixel size 0.5 deg in center
e |b[>1.0
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@, ermi

EARTH

0

R satellite

Visiie 200 MeV - 1 GeV 1GeV-10 GeV 10 GeV-1TeV

Aimosphere

Both the Sun and
the Moon
“shine” in

gamma-rays.

ADec
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y i Features of the Sky :
Brian L Winer 20 University of Pennsylvania  Apr 26, 2011

Tuesday, April 26, 2011




Lermi Features of the Sky :
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Lermi Features of the Sky :

Sources:
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Lermi Features of the Sky :

Sources:
- Galactic and Extra-Galactic
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Foorm! Features of the Sky Sl
Sources:
- Galactic and Extra-Galactic
-“Constant’
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e OHIC
g Features of the Sky .

Sources:

- Galactic and Extra-Galactic

-“Constant”

-Variable
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hermi Features of the Sky OHIO

Sources:
- Galactic and Extra-Galactic
-“Constant”
-Variable
-Regularity (Pulsars)
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hermi Features of the Sky OHIO

Sources:
- Galactic and Extra-Galactic
-“Constant”
-Variable
-Regularity (Pulsars)
-Flaring (AGN)
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hermi Features of the Sky OHIO

Sources:
- Galactic and Extra-Galactic
-“Constant”
-Variable
-Regularity (Pulsars)
-Flaring (AGN)
- Transient:
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hermi Features of the Sky OHIO

Sources:
- Galactic and Extra-Galactic
-“Constant”
-Variable
-Regularity (Pulsars)
-Flaring (AGN)
- Transient:
-One time events (GRBs)
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Sources:
- Galactic and Extra-Galactic
-“Constant”
-Variable
-Regularity (Pulsars)
-Flaring (AGN)
- Transient:
-One time events (GRBs)

vd

Fermi Source Catalog: 1TFGL

Y

=X

s ermi Features of the Sky 1

o No association o Possible association with SNR or PWN
x AGN v« Pulsar * Pulsar w/PWN
* Starburst Gal & PWN A Globular cluster
+ Galaxy O SNR 1 XRB or MQO
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. crnd Features of the Sky OHIC

Sources:
- Galactic and Extra-Galactic
-“Constant”
-Variable
-Regularity (Pulsars)
-Flaring (AGN)
- Transient:
-One time events (GRBs)

Diffuse Emission:
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“oermi Features of the Sky :

L

Sources:
- Galactic and Extra-Galactic
-“Constant”
-Variable
-Regularity (Pulsars)
-Flaring (AGN)
- Transient:
-One time events (GRBs)

Diffuse Emission:
- Galactic and Extra-Galactic
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oLow Features of the Sky OHIC

Sources:

- Galactic and Extra-Galactic Diffuse Emission: _Emlssmn: .
» , - Galactic and Extra-Galactic
-“Constant

_Variable - Cosmic-ray Interaction with

-Regqularity (Pulsars)
-Flaring (AGN)
- Transient:

-One time events (GRBs)

Brian L Winer 20 University of Pennsylvania  Apr 26, 2011

Tuesday, April 26, 2011



oLow Features of the Sky OHIC

Sources: Diffuse Emission:
- Galactic and Extra-Galactic P —— .
y , - Galactic and Extra-Galactic
-“Constant ) . .
: - Cosmic-ray Interaction with
-Variable - material (dust, gas)
-Regularity (Pulsars) 9
-Flaring (AGN)
-Transient:
-One time events (GRBs)
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oLow Features of the Sky OHIC

Sources: Diffuse Emission:
- Galactic and Extra-Galactic ; ' .
v . - Galactic and Extra-Galactic
-“Constant . . :
: - Cosmic-ray Interaction with
-Variable .
. - material (dust, gas)
" REgUlEN (PUlSETE) - interstellar radiation field
-Flaring (AGN)
- Transient:
-One time events (GRBs)
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ermi Features of the Sky

Sources:
- Galactic and Extra-Galactic
-“Constant”
-Variable
-Regularity (Pulsars)
-Flaring (AGN)
- Transient:
-One time events (GRBs)

.

Diffuse Emission:
- Galactic and Extra-Galactic
- Cosmic-ray Interaction with
- material (dust, gas)
- interstellar radiation field
- Dark Matter Annihilation or
decay???
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T2 ermi Fermi Science bl

Active Galactic Nuclei

Cosmic ray
acceleration

Unidentified
sources

Solar flares

Pulsars

Preliminar

Gamma Ray Bursts
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The Dark Side... OHIO

Fritz Zwicky ...

"')(: »
b . .
=

 The universe seems to be composed
of ~23% dark matter.

« Candidate:
Weakly Interacting Massive Particle

« WIMP might decay or self-annihilate

* Could lead to gamma-rays. .I

observed

g

.+ Bullet'@lust

- 2 .
’. - .-: ‘ o ~ . " . . ’0 o
A - . - ‘- < . " - N 5 .
‘. é £ . ; . - 2 -.'.‘ - >
.. ; .‘ . e V . o
. ’ v 4 e . - Z

-
. -
. -8
»
-

-"..l
* .
. o 8
. .
. . .
-
< ‘
. .
X > . @
'

expected
from
_luminous disk

M33 rotation curve
(fig. 1)

www4.nau.edu/

Chandra/Hubble
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A w

/ Gamma-rays

{0 y
2 W iZ/g
WIMP Dark ~ Vo
Matter Particles
Ecm~1OOGBV JI"' w\‘ Y
4 WHiZiaq e*\
T Neutrinos
N\ Vu
|
"
\ VuVe

+afew p/p, did

Antimatter
/X Y
WIMP Dark ~
Matter Particles
Ecm~100GeV \
4 Y

WIMP Annihilation

OHIO
'g 10 d rTm I,J | l i ‘l : ..’Ilu I".’l l/.".l ,'!I:,, '“!' ,l,,l, ,:,',E\:,"\ [
= > ; t - thar
— g b - bbar
= W -W
; 10 R s
-_i' . % total yields
= 0 3 : 200GeV
10 = vields not due to xdecay mass WIMP
10 % E_ —:1:
1 3 : (\ﬁlkl‘nlt‘ldt:lll\\TEL::)HIJ«;;”Lm :
" £l WIMP pair annihilation E
0 L gamma spectrum 3
lu- : 1111 11 P kSR 8N l L L L L1ill 1 | L1l llll:
10 T 1 10 0’ 1’
E, (GeV)
Gamma ray yield per final state bb
Mwime Total# vy >100MeV | >1GeV | >10GeV
10GeV | 17.3 12.6 1.0 0
100GeV | 24 5 22.5 12.4 1.0
1TeV 31.0 29.3 22.4 12.3
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“Derni Predicting the DM Signal

Spectral shape & flux magnitude

j-ray flux factors Energy spectrum Spectral
. (depends upon particle mass, Shape:
J(Z;dN/dE B,)dE branching fractions) .
. Universal
X number density?2
. (depends upon dark matter
4r Jp(r)r2dr / M? e clustering) Flux
X magnitude:
annihilation cross- Factors
section difficult to
(depends upon underlying disentangle
particle physics, inflation...) for single
X point source
distance-?
(depends upon dark matter
clustering)
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Targets in the DM Sky OHIC

L

S

Milky Way Halo simulated by Taylor & Babul (2005)

All-sky map of DM gamma ray emission (Baltz 2006)
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Targets in the DM Sky OHIC

Galactic Center:
- Large Statistics
- Complicated by

Astrophysical SourcesJ

Milky Way Halo simulated by Taylor & Babul (2005)

All-sky map of DM gamma ray emission (Baltz 2006)
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Targets in the DM Sky OHIC

Galactic Center:
- Large Statistics
- Complicated by

Astrophysical SourcesJ

Nearby Galaxies:
- dSph DM Enriched
- Known location
- Lower Statistics

Milky Way Halo simulated by Taylor & Babul (2005)

Y.

All-sky map of DM gamma ray emission (Baltz 2006)
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Targets in the DM Sky OHIC

DM Clumps in the Halo: Galactic Center:
- Few Astro. Bkg - Large Statistics

- Complicated by low - Complicated by

statistics, unknown loc Astrophysical Sources

W

Nearby Galaxies:
- dSph DM Enriched
- Known location
- Lower Statistics

Milky Way Halo simulated by Taylor & Babul (2005)

Y.

All-sky map of DM gamma ray emission (Baltz 2006)
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Targets in the DM Sky OHIC

DM Clumps in the Halo: Galactic Center:
- Few Astro. Bkg - Large Statistics

- Complicated by low - Complicated by

statistics, unknown loc Astrophysical Sources

W

Galactic Halo:
- Large Statistics

- Complicated by diffuse ' Nearby Galaxies: )

Y-rays from Cosmic Rays - dSph DM Enriched

- Known location
- Lower Statistics

Milky Way Halo simulated by Taylor & Babul (2005)

Y.

All-sky map of DM gamma ray emission (Baltz 2006)
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Targets in the DM Sky OHIC

DM Clumps in the Halo: Galactic Center:
- Few Astro. Bkg - Large Statistics

- Complicated by low - Complicated by

statistics, unknown loc Astrophysical SOUFCGSJ

Spectral Lines:
- Smoking Gun
- Small Stat.

Y

Galactic Halo:

- Large Statistics

- Complicated by diffuse Nearby Galaxies: )

Y -rays from Cosmic Rays - dSph DM Enriched

: : - Known location
Milky Way Halo simulated by Taylor & Babul (2005) _ Lo S stteiioe
All-sky map of DM gamma ray emission (Baltz 2006) >
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Targets in the DM Sky OHIC

) . )
DM Clumps in the Halo: Galactic Center:
- Few Astro. Bkg - Large Statistics

- Complicated by low - Complicated by
statistics, unknown loc Astrophysical Sources

— >

Spectral Lines:
- Smoking Gun
- Small Stat.

Y,
I
Electrons:
- Good Stats.
- Challenge:
Back
Galactic Halo: ac groundsJ
- Large Statistics _
- Complicated by diffuse Nearby Galaxies: )
Y-rayS from Cosmic RayS _ dSph DM EnriC.hed
Milky Way Halo simulated by Taylor & Babul (2005) : EQV(\)IVGVPSI?:’IEI];I’[(I)CnS
All-sky map of DM gamma ray emission (Baltz 2006) >
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Targets in the DM Sky OHIC

) . )
DM Clumps in the Halo: Galactic Center:
- Few Astro. Bkg - Large Statistics

- Complicated by low - Complicated by
statistics, unknown loc Astrophysical Sources

# J

Spectral Lines:
- Smoking Gun

Extragalactic:

- All galaxies - Small Stat.
- Isotropic Y.
~
Electrons:
- Good Stats.
- Challenge:
Back d
Galactic Halo: ackgroun SJ
- Large Statistics _
- Complicated by diffuse Nearby Galaxies: )
Y-rayS from Cosmic Rayi _ dSph DM En.riChed
Milky Way Halo simulated by Taylor & Babul (2005) : EQV(\)IVGVPSI?:’IEI];I’[(I)CnS
All-sky map of DM gamma ray emission (Baltz 2006) >
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First Year Data

e —

——

Challenge: Need to account for all the gamma-rays from non-DM sources
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Diffuse Gamma-Ray Background %E—Ifé

UNIVERSITY

Model: GALPROP Strong et al, ScienceWatch.com
SNR RXT1713-3946 MBS IS LT |
42 sigma (2003#2004 data)

ediffusion
eenergy losses
ereacceleration
econvection
eproduction of 8
secondaries. S

" 20 GeV/n

CR species:
S SN N S + » Onlyd location
B s » Heliospheric
% = : n modulation
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Galactic Center .

* Highest Flux of y-rays from DM

* Challenge: Understand Astrophysical Bkgs

* Source confusion

~ Energetic Sources

« Diffuse Emission along line of sight.
* Analysis Approach: (arXiv 0912.3828)

« { x 7 region around GC

*~ 11 months of data (front conve

Wide-Field Radio Image of the
Galactic Center
Ser D HII g A =90 cm

Ser D SNR \‘

b

New SNR 0.3+0.0

Threads
7 — New Feature
The Cane

. Background Galaxy

L -
.
: ‘> Threads

—

structure?

Snake

: New thread: The Pelican
e » SgrC  Coheremt \

Mouse -

SNR 359.0-00.9 % ' \
-

SNR 359.1-00.5

0 O

7% P

240 light years Tornado (SNR?)

-
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“oermi Galactic Center :

€
>

Shape Comparison |

* Highest Flux of y-rays from DM

o_.n
=
r'/

* Challenge: Understand Astrophysical Bkgs

Fracti

* Source confusion

~ Energetic Sources

Diffuse Backgrounds

~ Diffuse Emission along line of sight. 10%E" Dark Matter (100 GeV)
* Analysis Approach: (arXiv 0912.3828)

10*
« 7 X[ regionaroundGC ¢ b il
3 3.5 & 4.5 5
log(E)
11 months of data
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. : Onl@
> ermd Galactic Center ;
: Shape Comparison |

* Highest Flux of y-rays from DM |
C4in
i .910 E_ 4
* Challenge: Understand Astrophysical Bkgs 3 ‘H"“H
. =
= Source confusion )
~ Energetic Sources
_ — . . 2 Diffuse Backgrounds
~ Diffuse Emission along line of sight. 107E" Dark Matter (100 GeV)
* Analysis Approach: (arXiv 0912.3828)
10* ¢ |
« 7 X[ regionaroundGC ¢ S|
3 3.5 & 45|09(E) 5
11 months of data (front converti
SoiS 10 GeV
10° = [ '
10 . |
C .\-'\\
A SININEE
= E\'{j‘j i
10"k ; - >
102 ;_ 'x
: : \ RS I-"‘L
107 Preliminary NTnoan AN R WY
i L I le i i i RSN SN TN
G C i Energy (Mew
Brian L Winer 28 University of Pennsylvania  Apr 26, 2011

Tuesday, April 26, 2011




P
“sermi Galactic Center !

Wray

A1y
S:\)-:c Tck»«.;-:g-:

Shape Comparison |

* Highest Flux of y-rays from DM

510"
* Challenge: Understand Astrophysical Bkgs 3
» Source confusion g :

~ Energetic Sources

goeepeey '””l

Diffuse Backgrounds

« Diffuse Emission along li 10° £ Dark Matter (100 GeV)

- DarkMatter (500 GeV)
10
- | d
3 3.5 4 5

4 o3 =
E 02F
3 0.1 E
g 0 E—*--*—*—‘—hd--—------ ----------------------- '
£ : - . - Sy o R - :
I e e e L GU ) st B BN AR 1 [ S sy "8 s N S e N SRS
= = [qI1aF: T AN R N3 SRR W ;¢
e’ _0.3 :_.................:..:.................................- ........ ......‘.... .................... . .......... . ....... .- ..... ...... : : -
— P | " i A PR T T T T | M A A PR T T '3
10° 10¢ Energy (Mev]‘
Energy (MeV)
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G

/' Space Telescope

s ermil

Galactic Center

* Highest Flux of y-rays from DM

* Challenge: Understand Astrophysical Bkgs

. Ana'YSiS Approach: ar' NO012 387

0.4

§ 03
£ 02
= 0.1
=
S 0
=
v -0.1
iz
S 02
o
2 03

*  Source confusion

~ Energetic Sources

~ Diffuse Emission along line of sight.

Shape Comparison |

n

A
ol10 =

Fracti

10?

T !'HHI

Diffuse Backgrounds
10°E Dark Matter (100 GeV)

- DarkMatter (500 GeV)
104

r | 1 -

3 3.5 “

= ST e T | Ne | i i
é_ ..... ................................. Thel"e are ConSiderable systematic :
FREEE] I ' | uncertainties and potential detector effects |
E O in the energy range 1-10 GeV. ALAT task | .
E force is in the process of mitigating and N “\f\k o
S quantifying them. N g
é__; ................... l ........................................ == l .................... Sreeeonass 1 ...................... : TN \;\:;; : \:\\‘\
10° Energy (MeV) 1o i =neTay (Mew
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Dwarf Spheroidal (dSph) Galaxies /

e dSphs are excellent DM targets of opportunity.

* N-Body DM Simulation predicts large clumps that support star formation.

* Very high Mass/Light Ratio (Dark Matter dominated)
* Low content of gas and dust (low astrophysical gamma-ray sources)

* Many close by (<100 kpc)
e Consider the 14 targets for Fermi (e.g. high ge

Astrophys. J. 712, 147 (2010)
arXiv preprint: 1001.4531

® 11 month data set
e 100 MeV < E <50 GeV

* dSph will be point-like.

® Backgrounds
% Existing point-like

sources
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p i Limits from dSph Galaxies ;

/' Space Telesco

* No excess of events was detected for

any of the dSph. - WMAPMcSo?nN[IJatibIe _zzﬂr::Beremces z;i::ns
 Set 95% CL upper limits on flux from 1072 oelowwmap o um .- Fornax

the sample. 104; " satfptr " .. Bootes| |
 For 8 of the 14, the flux limits are - Tt T

combined with DM density inferred %10° P E e

from stellar data(®) to constrain dark | g [ oo SRESLERY a0 e -

matter models. 80 """""""

o

Beginning to constrai

A
SCEEET
V 1=
107
10% .
= "=
.1(r3 B ;i!!; W L1
102 10
m,,, (GeV)
() stellar data from the Keck observatory (by Martinez, Bullock, Kaplinghat)
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sl Searching for Dark Matter Gamma Ray Lines St

e “Smoking Gun” Signal

e Expected Branching fraction Small X Y
e Typically 10-' to 10

* Energy Resolution is key!

* Instrument resolution ~10% at 100 GeV

« Scan energy (7-200 GeV) looking for a
bump.

Example fit for a 40 GeV line
11 Month dataset Phys. Rev. Lett.104, 091302 (2010)

600.
"t
> 400} £
& | ¢
< B e
= 300 Final State 7Y — £y = Mpum
3200~ AL 172
ook background Final State vZ — £, = Mpar — 4
- Points: data sianal 4MDM
" red: total fit - g
N EESSNT S TR TUUT DU WU JU P TYT Ltk Wi Ml e 21T 0 T SN S T Y S (NS MUY S W |
0 30 35 40 a5 50
Energy (GeV)
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“2emi - Searching for Dark Matter Gamma Ray Lines .

/' Space Telescope

Eleven Month Photon Counts [20,300]GeV |

« 23 month data sample

« Signal Model is line smeared by LAT
response function.

e Background is power-law fit to side-bands
e Search Region:
e |b|>10° and 20° x 20° around GC

« Remove sources (|b[>1°).

Example fit for a 40 GeV line
11 Month dataset Phys. Rev. Lett.104, 091302 (2010)

B (deg)

600
L »e o 10—+
- »
sm \aE— ™
3 =
3 O
,E- S
2 400 s
3 £10-27 | :
~N : A -
< >
< 300 ©
.g v * + 20 % overall scale systematic error (UL)
3 « Additional systematic on structure with LAT
O 20— Tl c —28 _ resolution for E< 13 GeV of s/bg ~ 1%.
- g 1077 ”t * For E > 12 GeVno indication of a structure
o o L am systematic effectis seen, ]
- Points: data , | = , —o— NFW
} ) Signa =
- red: total fit e S . —v- Einasto
0 Bl L TR T DU WP JUUT PRI TTT Tk Wit il et 1T W TUN FUE SN T TUNY SU NN WY T 1 ::: 10- " NUII ReSUItl, set 95(yo ClL upper Iimlits o 'So‘w‘nxal
0 50 100 150 200
WIMP mass (GeV)
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G
/' Space Telescope

Searching for Dark Matter Gamma Ray Lines

« 23 month data sample
« Signal Model is line smeared by LAT

Eleven Month Photon Counts [20,300]GeV |

B (deg)

300
b

response function. B
e Background is power-law fit to side-bands o
e Search Region: .
e |b|>10° and 20° x 20° around GC =
« Remove sources (|b[>1°). r
Example fit for a 40 GeV line 1 I R S )
60011 Month dataset Phys. Rev. Lett.104, 091302 (2010) I UV — LUU UevV roFsoluEﬁomfzo&E:/w G;Vofslbgf~ 1%.
. *ForE > eV no indication of a structure
- ::_ systematic effectis seen. =
sm ‘.; s : ‘-I . ‘l' | . ‘l | 'I‘ T ] L 1
2 (Preliminary 1
~ 3 S ‘
> 400 ) 10-26 | .'r T ;
8 ‘£ ':\{ : I '
(;J' 3 e, g - | 'T‘_ | .,' 1IN
E 300 \9 - ) T r T T L
§ 200 /T T‘. "IT T 4 T T,/
o<« 1 . c | T I b / h /
: $ TN T4y ’
100:_—P ) . d g “ ) d
romsdate siona 7 =
r : ! -y - Einasto
PRI S-S TP T (3. Null Result, set'95% CL upper limits|-u - isothermal |
N 40 60 S0 100 120 140 160 180 ZZlINl 220
WIMP mass (GeV)
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Fermi detects more than just
gamma-rays.
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Interesting Features of Cosmic Ray Electrons

electron+positron flux

m ATIC {2008)

+ A BETS {(2001) v HESS (2008)

APR | ) T
?\ obo T .
(- ) .
_.m : v !
o g g N B 1% e
i < bpteald |
> 107 i i
O ; A N
2 .
s f
S
s
w
f I
10° 10' 107 10°
E (GeV)

eSpectral Features:

* ATIC excess around 600 GeV
* H.E.S.S possible cutoff around 1 TeV

positron fraction

C'\_ o
}'\
‘ s -+
0.10 & ]
I \\. g ol 3
gt P k‘"k‘._". * ‘1-0 : - b
:. AICAT 34435 ‘
L 1
0.01 L. 1 N s
10° 10 10° 10°
E (GeV)

e Pamela Shows excess in positron

= Nearby sources expected 7 astrophysical or exotic origin 7
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s, ermi Electrons and Hadrons With Fermi ;

C

XS
Electron candidate Hadron candidate
p few ACD tile hits in conjunction with the track » large energy deposit per ACD tile
» clean main track with extra-clusters very close to p small number of extra clusters around main track,
the track - note backsplash from the calorimeter large number of clusters away from the track
» well defined symmetric shower in the calorimeter, » large and asymmetric shower profile in the
not fully contained calorimeter
o[ AT does not distinguish electrons from positrons
* For what follows: “electrons” means both
* All events with E > 20 GeV are sent to the «
— ETet T, eleCLTOTIS W medar erectrons=pos OIS
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o erni Resulting Fermi Electron Spectrum .

4 S;-h_-’ T-.‘!‘--.;v £

Phy Rev D82, 092004 (2010)
 Fermi Data not compatible with prelaunch

Excellent Statistics:

. ~7.8M evts HE ] expectation.
L aence * Diffuse model can be modifiec
& ~124,000 evts LE :%:Eﬁ; g: * Doesn’t t1C

* No Evidence of

prominent spectral i A

feature seen by ATIC. [,| E&;ﬁ% SR % _
* Excess above 200 GeV | F?*Zé T L — T
« Can explain this with an ;j% L i

additional leptonic A I

component with a hard | [z Hﬁ} -

spectrum.

1
I Lol L R T R R A L R T R R A
10° 10’ 10° 10°
E (GeV)
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Search for Anisotropies of CRE o

Expected Distribution for Isotropic Distribution

Phy Rev D82, 092003 (2010)
 Expect CRE to be isotropic due to GMF.

* Perform search for Anisotropies for CRE
 E>60, 120, 240, 480 Ge\

x
X

90 95 100 105 110 115 12 125 130

» - .
A G W e
B PG LN LSS Rch
e L +%

-

I _-'("_- AL s -°i"'.""'. :c . +0
{,","\“'
- L. "!."“.‘
_ Deviation from Expected
Dbserved Distribution HESS @ e
HE | S 280 =30 @24 =16 =08 0,07 0.8 16 24 32 40
70 80 90 100 110 120 130 140 150 SIS
Significance ( ¢ )
Number of Events
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L Search for Anisotropies of CRE .

ray

S:\)-:e Tch L

Phy Rev D82, 092003 (2010)
Expect CRE to be isotropic due to GMF.

Perform search for Anisotropies for CRE
 E>60, 120, 240, 480 Ge\

Expected Distribution for Isotropic Distribution

9 95 100 105 110 115 120 125 130

l!:- | I 1 1 | I 1 I ] ] 1 I | I ! | 1 I ! ?
£ i )
o)
® 10°F E
o E =
X n 2
a . i
o
S . 4
8 "F E
= = =
: = 1
= - G
- Deviation from Expected
Observed Distribution U3 =
T T T 1 | 4 1
B S e 2 2 0 2 2
70 8 9 100 110 120 130 140 150 o
Number of Events Significance (o)
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p gy Limits on Anisotropies of CRE ;

Half-angular scale 90/I (deg)

L - * Perform a power spectrum analysis
oF -  multipole moments consistent with white
30 E noise from isotropic distribution.
z5 20 * Focus on dipole moment and p
0 =
E
-207 c‘) | | | 2‘ | | | 4‘_ | | | é | | | 8‘ | | ;O T T T TTTT T T T TTTT T T T TTTT T T T TTTT
Multipole | oL - B
: i E
> - i
'k L s B _
- ® o ° o - I -
B A A 7 E 1072 — —
. - ([ ® . o — _
=) A @) B |
e o2 - : ° E é). i ]
- A Upper Limits on i i ]
i ¢ Dipole Moment i = o
i | : | | | | // I | L | IIII| | | L1 IIII| I' | | L1 I:'-Illl :
10-3 PR H T T O S T N N SO T N NN N SO T SR NN S S S N R 1 10 102 103 104
100 200 300 400 500 Minimum Energy (GeV)
Minimun Energy (GeV)
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p gy Limits on Anisotropies of CRE ;

Half-angular scale 90/I (deg)

L - * Perform a power spectrum analysis
oF -  multipole moments consistent with white
30 E noise from isotropic distribution.
z5 20 * Focus on dipole moment and p
O 10; é Hon of Ic
0 =
£
-207 c‘) | | | 2‘ | | | 4‘_ | | | é | | | 8‘ | | ;O T T T TTTT T T T TTTT T T T TTTT T T T TTTT
Multipole | oL - ~
LA I R B T T T ] T T ; '... ;
> — |
o' LT - :
. :o o * o ’ © i
- . — 10‘2 — —
o ¢ o I & -
=) A Ie) B |
S o2 - s ® E g. i ]
- A Upper Limits on i i ]
- ° Dipole Moment i ne N
107° =
i | : | | | | | | [ IJ/'I/I| | | L1 IIII| | | L 11 III| :
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100 200 300 400 500 Minimum Energy (GeV)
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Gamma-ray Bursts

MODEL FOR GRB 031203

F (Collapsed
Stellar Core

Chandra X-ray
chandra.harvard.edu
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“ermi Gamma Ray Bursts Lol

- RBs):Th h f
. Gamma Ray Bursts were seen Gamma-Ray Bursts (GRBs): The Long and Short of It

with the earliest satellites. Long gamma-ray burst Short gamma-ray burst
: . . (>2 seconds’ duration) (<2 seconds’ duration)
e CGRO studies in detaill.

A red-giant
g . r colla
- |sotropic --> Extragalactic *;‘:tocﬁsc‘é’«ii. Sm,i:\
redshift measurement 1997 g Binary S

begin to spiral

Vel"y Enel'getIC ‘ inward....
« Beamed: E ~ 1044J syl

expels its outer
Seem to b 0

~eventually
colliding,

The resulting torus
has at its center

a powerful

black hole.

Gamma rays
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Gamma Ray Bursts

« Gamma Ray Bursts were seen
with the earliest satellites.

e CGRO studies in detaill.

Isotropic --> Extragalactic

e redshift measurement 1997
* Very Energetic

Beamed: E ~ 1044 J

« Seem to be of two types

« Long/Short Duriiiﬁi-

GRBOS0OSOZB
Fermi LAT

Long gamma-ray burst
(>2 seconds’ duration)

als A red-giant
4 star collapses
- > ONto its core....,

~Decoming so
dense that it

Gamma rays

Gamma-Ray Bursts (GRBs): The Long and Short of It

Short gamma-ray burst
(<2 seconds’ duration)

.
Stars* in _\
a compact P
binary system -»
begin to spiral

inward....
.

9=
o

~eventually
colliding,

The resulting torus
has at its center

a powerful

black hole.
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.l Gamma Ray Bursts :
/' Space Telescos ”
Fermi GRBs as of 100804
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514 GBM GRBs LS

Sl R 790 bee

In Field—of—view of LAT (264)
Out of Field—of—view of LAT (250)

Observable Rate: ~ 1/day by satellites
Estimate: 1/galaxy/million years
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erm! Test of Fundamental Physics

. S - T~.Il P

 Quantum Gravity could distort space at
very small scales.

* Some Quantum Gravity Models predict
that this distortion of space could lead
to:

= Lorentz Invariance Violation (LIV)

~ a.k.a: speed of light that is not
constant.

* a.k.a: Speed that depends on
wavelength (energy) of the light

A Gamma Ray Burst with:

*A short emission time

*High and Low Energy Gamma Rays
*A measured Redshift (i.e. Distance)

Brian L Winer
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o il Basic Idea :
T
[t
AANAN N
E
‘ For Distant GRBs the
delays can be sizable
E, | and easily measurable.
Rough Numbers:
" d
At=10msx |—— x| =2 | usingE,, =E,,
B, j\ [ 1Gev] 1Gpe S
A
2 2 o0 2 o0 2
erz) ~2 (g
— 1= S = S
Ezh kzz:l ¢ <‘]\4QG,I<;C2 kzz:l " gkj\4Planckc2
Moc.k = ExMpianck s €{—1,0,1}
OE,, n+1 En \" ,
Vph = apjh %c[l—sn 5 (ManCQ) ] n = min{k|s; # 0}
1 (1
At:sn( i) 2 / Lra) dz’
g 2H, MQGnC V(14 27)3 + Qa
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g GRB090510 e
- GRB090510: Short GRB w/ HE swlo ]
Photons s
= After glow measured ; 102%—
+ 2=0.903 +/- 0.003 -
* Short Pulses 10_ B é’i Qﬁ’é& &
+ Observed in the GBM and LAT 5 190 zsoka L o
« High Energy Gamma 31 GeV ; : : |

~ 10 Range: 27.97 - 36.32 GeV
*  Associated with GRB at 5

 LAT [ L (d)]
£ 4oL (All events) ! Lo 14000 o
2 | i | 1 2
£ Lol E L 12000 2
S i i i ] ©
[ ! ™ 3
O : 1 1 0
[ LAT : o ()
£ af>100MeV) | L 1400 o
- 1 1 1 1
2 i i 1 %
5 of i i 200 o
S i ! o - o
B 1 1 1 N
gt ! — o _
£ CILAT i i Mo 3
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~i GRB090510

4 S;. y-‘_‘.’ T-.‘!‘-j.iv pe

« GRB090510: Short GRB w/ HE 100
Photons S

= After glow measured

» z=0.903 +/- 0.003
» Short Pulses
Conclusions:
* Strictest limits (n=1) ever placed on LIV by an order c
magnitude

10

t ]
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o ]
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‘ : e i
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: -
= 4} (>100 MeV) 1400 ©
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- i 1 1 c
5 ol i i looo 3
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g 1 b
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L (>1GeV i o
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Jomt Summary

* Fermi has been working very well and carrying out a
wide variety of astrophysical measurements.

* Multi-pronged Searches for Dark Matter WIMPs
 Number of challenging topics still under study.

* Tests of fundamental physics (LIV)

 Fermi is a great detector of cosmic rav electro
positrons.
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y i Summary

* Fermi has been working very well and carrying out a
wide variety of astrophysical measurements.

* Multi-pronged Searches for Dark Matter WIMPs
 Number of challenging topics still under study.

* Tests of fundamental physics (LIV)

* Fermi is a great detector of cosmic ray electrons,
positrons.
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