Exploring the Unknown Universe Daniel Whiteson, UC Irvine

Motivation

The Standard Model

 $-\frac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu} - g_s f^{abc}\partial_{\mu}g^a_{\nu}g^b_{\mu}g^c_{\nu} - \frac{1}{4}g^2_s f^{abc}f^{adc}g^b_{\mu}g^c_{\nu}g^d_{\mu}g^e_{\nu} +$ $\frac{1}{2}ig_s^2(\bar{q}_i^{\sigma}\gamma^{\mu}q_j^{\sigma})g_{\mu}^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- M^2 W^+_{\mu} W^-_{\mu} - \frac{1}{2} \partial_{\nu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2c^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} \partial_{\mu} H \partial_{$ $\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{*}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{\sigma^{2}} +$ $\frac{2M}{q}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{q^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu W^{+}_{\nu}W^{-}_{\mu}) - Z^{0}_{\nu}(W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + Z^{0}_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\mu})$ $W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-})]$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} +$ $\frac{1}{2}g^2\dot{W}^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu} + \dot{g}^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}) +$ $g^2 \tilde{s}^2_w (A^-_\mu W^+_\mu A_\nu \tilde{W}^-_\nu - A^-_\mu A^-_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A^-_\mu Z^0_\nu (W^+_\mu W^-_\nu - A^-_\mu A^-_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A^-_\mu Z^0_\nu W^+_\mu W^-_\nu - A^-_\mu A^-_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A^-_\mu Z^0_\nu W^+_\mu W^-_\nu - A^-_\mu A^-_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A^-_\mu Z^0_\nu W^+_\mu W^-_\nu - A^-_\mu A^-_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A^-_\mu Z^0_\nu W^+_\mu W^-_\nu W^-_\nu] + g^2 s_w c_w [A^-_\mu Z^0_\nu W^+_\mu W^-_\nu W^-_\nu] + g^2 s_w c_w [A^-_\mu Z^0_\nu W^+_\mu W^-_\nu W^-_\nu] + g^2 s_w c_w [A^-_\mu Z^0_\nu W^+_\mu W^-_\nu W^-_\nu] + g^2 s_w c_w [A^-_\mu Z^0_\nu W^+_\mu W^-_\nu W^-_\nu] + g^2 s_w c_w [A^-_\mu Z^0_\nu W^+_\mu W^-_\nu W^-_\nu] + g^2 s_w c_w [A^-_\mu Z^0_\nu W^+_\mu W^-_\mu] + g^2 s_w c_w [A^-_\mu Z^0_\nu W^+_\mu W^-_\mu] + g^2 s_w c_w [A^-_\mu Z^0_\mu W^-_\mu] + g^2 s_w [$ $W^{+}_{\nu}W^{-}_{\mu}) - 2A_{\mu}Z^{0}_{\mu}W^{+}_{\nu}W^{-}_{\nu}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] \frac{1}{8}g^2\alpha_h[H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2]$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) W^-_\mu(\phi^0\partial_\mu\phi^+-\phi^+\partial_\mu\phi^0)]+ \frac{1}{2}g[W^+_\mu(H\partial_\mu\phi^--\phi^-\partial_\mu H)-W^-_\mu(H\partial_\mu\phi^+-\phi^-\partial_\mu H)$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{\mu}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s^{2}_{\mu}}{c_{\mu}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$ $igs_w MA_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1-2c_w^2}{2c_e} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) +$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] \frac{1}{4}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s^2_u}{c_v}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- +$ $W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{u}^{2}}{c}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} +$ $\begin{array}{l} W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}\mathcal{A}_{\mu}H(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+}) - g^{2}\frac{i\omega}{2\kappa}(2e_{w}^{2}-1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - g^{1}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-} - \bar{e}^{\lambda}(\gamma\partial + m_{k}^{\lambda})e^{\lambda} - \bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda} - \bar{u}_{\lambda}^{\lambda}(\gamma\partial + m_{k}^{\lambda})u_{\lambda}^{\lambda} - g^{\lambda}(\partial_{\mu}A_{\mu}\phi^{+}\phi^{-}) - g^{\lambda}(\partial_{\mu}A_{\mu}\phi^{+}\phi^{-}) - g^{\lambda}(\partial_{\mu}A_{\mu}\phi^{+}\phi^{-}) - g^{\lambda}(\partial_{\mu}A_{\mu}\phi^{+}) - g^{\lambda}(\partial_{\mu}A$ $\bar{d}_i^{\lambda}(\gamma \partial + m_d^{\lambda})d_i^{\lambda} + igs_w A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_i^{\lambda}\gamma^{\mu}u_i^{\lambda}) - \frac{1}{3}(\bar{d}_i^{\lambda}\gamma^{\mu}d_i^{\lambda})] +$ $\frac{ig}{4c_w}Z^0_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s^2_w - 1 - \gamma^5)e^{\lambda}) + (\bar{u}^{\lambda}_j\gamma^{\mu}(\frac{4}{3}s^2_w - 1 - \gamma^5)e^{\lambda})]$ $(1 - \gamma^5)u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W^+_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + \bar{\nu}^2]$ $(\bar{u}_j^\lambda \gamma^\mu (1 + \gamma^5) C_{\lambda\kappa} d_j^\kappa)] + \frac{ig}{2\sqrt{2}} W^-_\mu [(\bar{e}^\lambda \gamma^\mu (1 + \gamma^5) \nu^\lambda) + (\bar{d}_j^\kappa C^{\dagger}_{\lambda\kappa} \gamma^\mu (1 + \gamma^5) \nu^\lambda)]$ $\gamma^{5}(u_{i}^{\lambda})] + \frac{ig}{2\sqrt{2}} \frac{m_{\lambda}^{\lambda}}{M} \left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right] \frac{g}{2}\frac{m_a^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^0(\bar{e}^{\lambda}\gamma^5 e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) +$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^-[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa})]$ $\gamma^5 u_i^\kappa] - \frac{g}{2} \frac{m_{\lambda}^{\lambda}}{M} H(\bar{u}_i^{\lambda} u_i^{\lambda}) - \frac{g}{2} \frac{m_d^{\lambda}}{M} H(\bar{d}_i^{\lambda} d_i^{\lambda}) + \frac{ig}{2} \frac{m_{\lambda}^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) \frac{ig}{2} \frac{m_A^{\lambda}}{M} \phi^0(\bar{d}_i^{\lambda} \gamma^5 d_i^{\lambda}) + \bar{X}^+ (\partial^2 - M^2) X^+ + \bar{X}^- (\partial^2 - M^2) X^- + \bar{X}^0 (\partial^2 - M^2) X^ \overset{\tilde{M}^{2}}{\overset{\sigma^{2}}{\rightarrow}}X^{0} + \overset{\tilde{Y}}{Y}\partial^{2}\overset{\tilde{Y}}{Y} + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}))$ $\partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+})$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] +$ $\frac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+-\bar{X}^-X^0\phi^-]+\frac{1}{2c_w}igM[\bar{X}^0X^-\phi^+-\bar{X}^0X^+\phi^-]+$ $igMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$

Can this be right?

Outline

I. Motivation II. Strategy III. Results

Searching for new physics

Our goals:

- Maximize possibility for discovery
- Learn something no matter what we see

Traditional approach

Bet on a specific full theory

Optimize analysis to squeeze out maximal sensitivity to new physics.

Model independent search

Compromise

Admit the need for a model

New signal requires a coherent physical explanation, even trivial or effective

<u>Generalize your model</u>

Focus on the general experimental sensitivity Construct simple models that describe classes of new physics

Examples

Simple SM extensions: fourth generation, Z', resonances (X->tt) etc

Effective Lagrangian

A natural, compact language for communication between theory and experiment.

A Theorist's dream?

Unfolded cross-sections

Deconvolution to remove detector effects

Publish measured differential cross-sections

Theorists don't need to know/have detector description

This is hard!

Outline

I. Motivation II. Strategy III. Results

a. Heavy resonances (Z')

b. Heavy quarks (b', t')c. Simplified SUSY

CDF

Dataset

High mass resonances

UCI Undergrad Eddie Quinlan

High mass dimuon res.

CDF Run II Preliminary 4.6 fb⁻¹

CDF Run II Preliminary 4.6 fb⁻¹

PRL 2011, to appear

Z' to muons

Z' to muons

CDF Run II Preliminary 4.6 fb⁻¹

PRL 2011, to appear

ATLAS Z' Penn +other groups

Limits

Penn +other groups

Limits

Penn +other groups

	Observed	l limit	Expected limit		
	mass [TeV]	$\sigma B \; [\mathrm{pb}]$	mass [TeV]	$\sigma B \; [\mathrm{pb}]$	
$Z'_{ m SSM} ightarrow e^+ e^-$	0.957	0.155	0.964	0.148	
$Z'_{ m SSM} ightarrow \mu^+ \mu^-$	0.834	0.297	0.895	0.206	
$Z'_{\rm SSM} o \ell^+ \ell^-$	1.048	0.094	1.084	0.082	

Outline

I. Motivation II. Strategy III. Results

a. Heavy resonances (Z')

b. Heavy quarks (b', t')

c. Simplified SUSY

4th generation

PDG says it's ruled out to 6σ....

4th generation

PDG says it's ruled out to 6σ....

..that's true if the masses are degenerate

UC Davis

<u>Selection</u>

<u>Sample</u>

4.6/fb

a

UC Davis

UCI Undergrad Matt Hickman

Selection

- 2 like-signed leptons pt>20 GeV at least one isolated
- 2 jets
 - pt>20 GeV
 - >=1 btags
- Missing transverse energy >20 GeV

<u>Sample</u>

2.7/fb

PRL 104 091801 (2010)

b'

Final selection

2 like-signed leptons 2 jets >=1 btags

Missing transverse energy

Signal (madgraph)

Signal (madgraph)

<u>HT</u>

Scalar sum of transverse energy in the event

Includes jets, lepton and missing transverse energy

Captures soft recoil and unclustered jets

CDF Run II Preliminary

top quark pair background

Analysis technique

CDF Run II Preliminary

<u>Events</u>

heavy and jetty

<u>Analysis variable</u>

- if $N_{jets} == 5$, Jet- $H_T = H_T$.
- if $N_{jets} == 6$, Jet- $H_T = H_T + 1000$ GeV.
- if $N_{jets} >= 7$, Jet- $H_T = H_T + 2000$ GeV.

Data, >=1 b-tag

The numbers

	Control Region		Signal Region		Sum	
Jets	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.
5	207 ± 125	199	84 ± 65	87	291 ± 190	286
6	43 ± 31	40	18 ± 12	14	61 ± 43	54
≥ 7	11 ± 3.9	5	3.4 ± 3.4	12	14 ± 7.1	17

Direct searches

Direct searches

b' and t' UCI postdoc UCI undergrad Christian Flacco Matt Kelly If $m_{t'} > m_{b'}$ U

b' and t'

B(t'→ Wq)

$$1 = 0.8 = 0.6 = 0.4 = 0.2 = 0 = 0$$

 $(0,1) = (1,1) = 0.2$
 $(0,1) = (1,1) = 0.2$
 $(0,1) = (1,1) = 0.2$
 $(0,1) = (1,1) = 0.2$
 $(0,1) = (1,1) = 0.2$
 $(0,2) = (1,2) = 0.4$
 $(0,4) = (1,0) = 0.4$
 $(0,4) = (1,0) = 0.4$
 $(0,4) = (1,0) = 0.4$
 $(0,6) = (1,0) = 0.8$
 $(0,0) = (1,0) = 0.8$
 $(0,0) = (1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0.8$
 $(1,0) = 0$

b' and t'

t' and b'

Limits

$$V_{CKM4} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{ub'} \\ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \\ V_{td} & V_{ts} & V_{tb} & V_{tb'} \\ V_{t'd} & V_{t's} & V_{t'b} & V_{t'b'} \end{pmatrix}$$

V_{ud}	=	0.97418	\pm	0.00027	Nuclear Beta decay
V_{us}	=	0.2255	\pm	0.0019	Semileptonic K-decay
V_{ub}	=	0.00393	\pm	0.00036	Semileptonic B-decay
V_{cd}	=	0.230	\pm	0.011	Semileptonic D-decay
V_{cs}	=	1.04	\pm	0.06	Semi- /Leptonic D-decay
V_{cb}	=	0.0412	\pm	0.0011	Semileptonic B-decay
V_{tb}	>	0.74			Single Top-production

heavy quarks

If the lifetime is short enough so the decay is in the central detector:

m_{Q'} > 290 GeV

ATLAS t'

UCI grad student Michael Werth

topology

Boosted tops

Mass reconstruction

Assume lepton and neutrino are ~collinear

Data

No sign of heavy quarks...

Limit

m_{t'} > 275 GeV

Limit

Dark Matter

Need long lived dark matter X

Dark Matter

Need long lived dark matter X Give it some dark charge that is conserved (eg R-parity for susy LSP)

Dark Charge

SM Charges

Dark Matter

Need long lived dark matter X Give it some dark charge that is conserved (eg R-parity for susy LSP)

Dark Charge

X can't be light (~< 10 GeV) and carry SM charges to be consistent with relic density.

Produce Y, decay as Y -> f X

Look for ttbar + invisible X T' -> t+X stop -> t + LSP

Transverse mass

Limits

Outline

I. Motivation II. Strategy III. Results

a. Heavy resonances (Z')
b. Heavy quarks (b', t')
c. Simplified SUSY

SUSY

<u>Goal</u>

Set limits on SUSY-like processes in as general a fashion as possible

<u>Approach</u>

Use effective lagrangian, explicitly set particle masses (EW scale): simple to handle, easy to interpret

Set limits as functions of these masses, not parameters of specific models: can be easily translated into arbitrary models

Hows

How many particles & parameters needed?

Want leptons needs Ws and Zs, so chargino/neutralinos and sleptons

Want strong production so squarks and gluinos

R-Parity conserving need LSP

Large sections of this space are 3 or 4-dimensional

<u>CDF</u> Still producing world-class physics

ATLAS

Working well, much more to come

