

W-> τv Observation at ATLAS

University of Pennsylvania HEP Seminar Tuesday, April 5, 2011

Sarah Demers Yale University

Outline

SHORT ATLAS Introduction

Why W-> τν ?
 Why taus?

Event Selection

- Trigger Offline
- Observation
- Future Plans

Special Mention of the analyzers for the observation:

Guilherme Nunes Hanninger (*Bonn*) Lidia Dell'Asta (*INFN, Milano*) Zofia Czyczula (*Yale, now Oslo*)

Current analysis team includes many others!

The ATLAS Detector at CERN's LHC

- **Tracking detectors** for momentum and charge (and in the case of the TRT) particle ID
 - Sampling Calorimeters
- Trigger and Data Acquisition

The ATLAS Detector at CERN's LHC

- Tracking detectors
 - **Sampling Calorimeters** for energy deposits with fine granularity for shape discrimination
- Trigger and Data Acquisition

The ATLAS Detector at CERN's LHC

Trigger and Data Acquisition capable of handling 40 MHz interaction rate and writing out events at a rate of O(100 Hz)

7

Visible energy and momentum

Decay modes	TAUOLA-CLEO
$ au ightarrow e u_e \ u_{ au},$	17.8 %
$ au ightarrow \mu u_{\mu} u_{ au}$	17.4 %
$ au ightarrow h^{\pm} neutr. V_{ au}$	49.5 %
$ au ightarrow \pi^{\pm} u_{ au}$	11.1 %
$ au ightarrow \pi^0 \pi^\pm u_ au$	25.4 %
$ au ightarrow \pi^0 \pi^0 \pi^\pm u_ au$	9.19 %
$ au ightarrow \pi^0 \pi^0 \pi^0 \pi^\pm u_ au$	1.08 %
$\tau \to K^{\pm} neutr. v_{\tau}$	1.56 %
$ au ightarrow h^{\pm} h^{\pm} h^{\pm} neutr. u_{ au}$	14.57 %
$ au ightarrow \pi^{\pm}\pi^{\pm}\pi^{\pm} u_{ au}$	8.98 %
$ au ightarrow \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	4.30 %
$ au ightarrow \pi^0 \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	0.50 %
$ au ightarrow \pi^0 \pi^0 \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	0.11 %
$ au o K^0_S X^\pm u_ au$	0.90 %
$ au ightarrow (\pi^0) \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} \nu_{ au}$	0.10 %
other modes with K	1.30 %
others	0.03 %

Some tau-specific details

Outline

- SHORT ATLAS Introduction
- Why W-> τν ?
 Why taus?
- Event Selection
 - Trigger
 - Offline
- Observation
- Future Plans

Why W-> τν ? Taus as Probes for "New" Physics

The tau, the heaviest lepton, couples strongly to the Higgs, and is key to a 5σ discovery in the important, but challenging, range of 115 - 125 GeV. This analysis will rely (at least partially) on tau triggers!

Neutral Higgs

Life without the Higgs?

Many Higgless theories include new particles with preferential couplings to the third generation, often motivated by trying to explain the very heavy top quark

Understanding New Physics

- All decay modes should be explored to understand the new physics
 Not just electrons and muons!
- Tau decays can carry information about the polarization of the object that decays into them
 - Left-handed tau -> neutrino prefers to go in direction of tau

Why W-> τv ? My Version of the ATLAS Tau program

- Commission tau reco/ID and tau trigger
 - comparisons between data and monte carlo
- Measure efficiencies from the data with SM standard candles
 Z->TT
 - eventually ttbar?
- Probe for New Physics signatures with taus

Why NOT W->τν? Trigger and QCD background challenges Is the physics interesting?

In Fall, 2009: What if the luminosity profile increases slowly? Ws could provide the first evidence of taus! Can we make an observation (cross section measurement?) with a "simplified" trigger?

Outline

- SHORT ATLAS Introduction
- Why W-> τν ?
 Why taus?
- Event Selection
 - Trigger
 - Offline
- Observation
- Future Plans

Selecting the W-> τv events

- Trigger
- Separate the events from background offline
- W->τν production cross section at 7 TeV at NNLO is 10.46 nb
 - About ten times higher than the Z->ττ production
 - Orders of magnitude lower than QCD di-jet production

Relevant Analysis Cuts:

Missing $E_T > 30$ GeV tau p_T between 20 and 60 GeV

The trigger

- There are only two objects in these events that we can use to control the trigger rate:
 - Missing transverse energy
 - Tau transverse energy
- Neither provide dramatic enough rate reduction, so the two need to be used in combination
- Keeping the rate low and measuring the trigger efficiency at the end of the day is challenging!
 - Particularly tricky: correlations between objects

Level 1 Hardware Trigger: **5** GeV Tau + 5 GeV Missing E_T

Level 1 Hardware Trigger: 5 GeV Tau + 5 GeV Missing E_T

Level2 Trigger

- Only access to small fraction of data is available (a few percent) via L1 tau region of interest
- Refined Missing ET
 Missing ET > 5 GeV
- On the tau side, require only a track
 - Track in tau RoI > 6 GeV

Trigger Summary

Object	Cut
L1 Missing ET	5 GeV
L1 Tau	5 GeV
L2 Missing ET	5 GeV
L2 Tau (track)	6 GeV
EF Missing ET	15 GeV
EF Tau	-

Trigger is >99% efficient with respect to offline cuts, as measured in MC

Offline Selection

- Good data quality and cleaning cuts including
 - Primary vertex w/ 4 tracks p_T > 100 MeV
 - Jets cannot point toward Missing E_T
 - Objects cannot point toward overlap calo region (crack)
- Missing $E_T > 30 \text{ GeV}$
- 20 GeV > tau candidate > 60 GeV
- Electron veto (loose electrons)
- Muon veto (combined muons)
- Missing ET significance > 6

Tau Identification

Jets

Tuesday, April 5,

2011

Sarah Demers, Yale

University

Sample	cross section X branching ratio	#events/8 hours (10 ³¹)		
dijets (p _T 8 – 17 GeV)	1.7 X 10 ¹⁰ pb	5 X 10 ⁹		
dijets (p _T 17 – 35 GeV)	1.4 X 10 ⁹ pb	4 X 10 ⁸		
dijets (p _T 35 – 70 GeV)	9.3 X 10 ⁷ pb	3 X 10 ⁷		
$W \rightarrow \tau \upsilon, \tau \rightarrow had$	1.1 X 10 ⁴ pb	3200		
$Z \rightarrow TT$, $1T \rightarrow had$	1.55 X 10 ³ pb	450		

Tau ID: Early Days

- "Double Seeded": 10 GeV energy deposit in the calorimeter matching 6 GeV track
- "Tight" Cuts tuned for 30% efficiency for selecting taus and 2% efficiency for selecting jets using:
 - **Track Radius**: p_T weighted ΔR of tracks associated with tau candidate
 - **Electromagnetic Radius**: E_T weighted ΔR of all cells in EM calorimeter associated with tau candidate
 - Leading track momentum fraction: ratio
 between p_T of lead track and total tau transverse
 momentum

Missing E_T Significance

Tuesday, April 5,

2011

Sarah Demers, Yale

University

First W-> τν candidate at ATLAS May 24, 2010

Outline

- SHORT ATLAS Introduction
- Why W-> τν ?
 Why taus?
- Event Selection
 - Trigger
 - Offline
- Observation
- Future Plans

Timeline

- W-τν Observation approved by ATLAS Collaboration: Nov 2010
- 546 nb-1
- 78 events with excellent signal/background ratio

Summary

	Data	$W ightarrow au_{ m h} u_{ au}$	$W ightarrow e u_e$	$W ightarrow \mu u_{\mu}$	$W o au_\ell u_{m{ au}}$	$Z \rightarrow ee$	$Z ightarrow \mu \mu$	Z ightarrow au au
Trigger	986439	954.5±5.2	3560.7 ± 3.4	$521.4{\pm}1.6$	296.5 ± 2.8	75.3 ± 0.2	59.7 ± 0.2	$115.1 {\pm} 0.7$
QCD jets rejection	415951	728.3 ± 4.7	2735.3 ± 3.5	400.7 ± 1.5	229.4 ± 2.6	24.5 ± 0.1	$45.1 {\pm} 0.1$	$71.4 {\pm} 0.6$
$E_{\rm T}^{\rm miss} > 30 { m ~GeV}$	29686	411.5 ± 3.8	1828.3 ± 3.3	317.1 ± 1.3	121.9 ± 1.9	$1.13 {\pm} 0.03$	$34.4 {\pm} 0.1$	$35.4 {\pm} 0.4$
au selection	2408	$118.0{\pm}2.1$	1482.0 ± 3.1	26.6 ± 0.4	$34.4{\pm}1.0$	$0.59{\pm}0.02$	$3.24 {\pm} 0.04$	11.9 ± 0.3
Lepton rejection	685	$94.8 {\pm} 1.9$	6.7 ± 0.2	4.9 ± 0.2	2.3 ± 0.3	< 0.005	$0.11 {\pm} 0.01$	4.2 ± 0.2
$S_{E_{\mathrm{T}}^{\mathrm{miss}}} > 6$	78	55.3 ± 1.4	$4.2 {\pm} 0.2$	$3.7{\pm}0.1$	$1.8 {\pm} 0.2$		$0.08{\pm}0.01$	2.0 ± 0.1

32

Estimating QCD Background from Data

$N^A_{QCD} = N^B N^C / N^D$

(Correct for Non-QCD in Control Regions)

$$\mathbf{N}_{\text{QCD}}^{\text{A}} = (\mathbf{N}^{\text{B}} - c_{\text{B}}(\mathbf{N}^{\text{A}} - \mathbf{N}_{\text{QCD}}^{\text{A}})) \frac{\mathbf{N}^{\text{C}} - c_{\text{C}}(\mathbf{N}^{\text{A}} - \mathbf{N}_{\text{QCD}}^{\text{A}})}{\mathbf{N}^{\text{D}} - c_{\text{D}}(\mathbf{N}^{\text{A}} - \mathbf{N}_{\text{QCD}}^{\text{A}})}$$

Estimated 11 QCD events in signal region (A)

Sanity Checks

Track Multiplicity and Tau Charge

Tau-Missing E_T angle and Missing E_T

Number of Events / (π/15)

Future Plans

- W->τν Cross Section Measurement
 - Yale Group Postdoc (Cristobal Cuenca Almenar) supporting trigger efficiency measurement
- Exploit excellent signal to background in order to understand our ability to use tau decays to access polarization information

Toy Monte Carlo Study by Zofia

Conclusions

- The W->τν analysis provides a fantastic benchmark channel for the trigger and a good test-bed for challenging physics studies
- The success in this channel bodes well for the future tau physics program at the LHC!
- Thanks very much to HEP at Penn for the invitation and to Jean O'Boyle for putting up with making my arrangements!