

Hunting the Higgs at CDF

Tuesday, March 22, 2011

Tevatron

What we know:

 Direct search at LEPII: Mh > 114 GeV/c2 @95% CL
 Precision EWK meaurements (top mass, W mass, etc): M_h = 89.0⁺³⁵ -26 GeV/c² M_h < 158 GeV/c² @95% CL

200

5

b

b

$WH \rightarrow \ell \nu b \overline{b}$ \longrightarrow 1 High P_T Lepton + $\not E_T$ + b jets

 $WH \rightarrow \ell \nu b \bar{b}$ \longrightarrow 1 High P_T Lepton + \not{E}_T + b jets $ZH \rightarrow \ell \ell b \bar{b}$ \longrightarrow 2 High P_T Leptons + b jets

 $WH \rightarrow \ell \nu b \bar{b} \longrightarrow 1 \text{ High } P_T \text{ Lepton } + \not{E}_T + b \text{ jets}$ $ZH \rightarrow \ell \ell b \bar{b} \longrightarrow 2 \text{ High } P_T \text{ Leptons } + b \text{ jets}$ $ZH \rightarrow \nu \nu b \bar{b} \longrightarrow 0 \text{ High } P_T \text{ Leptons } + \not{E}_T + b \text{ jets}$

 $WH \rightarrow \ell \nu b \bar{b} \longrightarrow 1 \text{ High } P_T \text{ Lepton } + \not{E}_T + b \text{ jets}$ $ZH \rightarrow \ell \ell b \bar{b} \longrightarrow 2 \text{ High } P_T \text{ Leptons } + b \text{ jets}$ $ZH \rightarrow \nu \nu b \bar{b} \longrightarrow 0 \text{ High } P_T \text{ Leptons } + \not{E}_T + b \text{ jets}$ $VH, VBF, H \rightarrow \tau \tau + 2j \longrightarrow 1 \text{ Lepton } + \text{Trk(s)} + \text{ jets}$

Primarily: $H \rightarrow WW$

$p\bar{p} \rightarrow H \rightarrow WW^*$ $p\bar{p} \rightarrow VH \rightarrow VWW^*$

Decay of W's will determine final state configuration

Double tags: 1.~5 evts/ 6fb⁻¹ 2.~10 evts/ 6fb⁻¹ 3.~1 evts/ 6fb⁻¹

The Challenge...

 Higgs Production is a low rate process at the Tevatron. • Backgrounds are many orders of magnitude larger. •Challenge: Separate Signal from Background

The Challenge...

 Higgs Production is a low rate process at the Tevatron. • Backgrounds are many orders of magnitude larger. •Challenge: Separate Signal from Background

Before Anything S:B ~ 1:10¹¹

- Select High P_T leptons (e, μ , τ).
- Select Events with Missing Energy (neutrino(s))
- Select Events with jets from b-quarks (low M_H)
- Details for each analysis slightly different

- Select High P_T leptons (e, μ , τ).
- Select Events with Missing Energy (neutrino(s))
- Select Events with jets from b-quarks (low M_H)
- Details for each analysis slightly different

W+2 jets; 1 B-tag

MET+jets; 2 B-tags

Using Advanced Algorithms

- Variety of methods: Artificial Neural Networks (ANN), Boosted Decision Trees (BDT), Matrix Element (ME)
- Example: ANN can be used to combine information from different kinematic variables: both Energy-based and Shape-based
- Improved discrimination and less sensitive to systematic effects

Using Advanced Algorithms

- Variety of methods: Artificial Neural Networks (ANN), Boosted Decision Trees (BDT), Matrix Element (ME)
- Example: ANN can be used to combine information from different kinematic variables: both Energy-based and Shape-based
- Improved discrimination and less sensitive to systematic effects

~45-55% Efficient
E_T and η dependent
Mistag rate ~ 1-2%
Loose tagging helpful
in double tagging

SecVtx Tag Efficiency for Top b-Jets 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Jet Eta

~45-55% Efficient
E_T and η dependent
Mistag rate ~ 1-2%
Loose tagging helpful
in double tagging

- Look in double b-tagged dijet events
- Background is derived from data
- Signal distribution from Monte Carlo
- Fit returns
- Signal Evts: 5674 ± 448
 b-JES: 0.974 ± 0.011

$ZH \rightarrow \ell\ell b\bar{b}$ Channel

- Two High P_T ee or μμ
- No (direct) Missing E_T
- 2 jets
 - Split up 1 and 2 b-tags

Features:

- 1. Small σBR
- 2. Several tight constraints
 - i. $M_{ll} \cong M_z$
- 3. $\sim 1 \text{ evt}/\text{fb}^{-1}$

Selecting the Z Sample

- Require at least one tight muon
 Pt > 18 GeV/c
 |n| < 1.1
- Require at least one tight electron
 Et > 18 GeV
 |n| < 3.6
- 76 GeV/c² \leq M_{II} \leq 106GeV/c²
- Require another loose lepton of same flavor, opposite sign
- At least two tight jets
- Require at least one tight electron
 one with Et > 25 GeV/c
 one with Et > 15 GeV/c
 - > |n| < 2.0

• >=1 tag

Improve the Dijet Mass (1)

- uses a NN, with inputs of observed jet energies and directions, MET magnitude and direction, to correct the two highest Et jets
 - L5 Jet 1 E_T L5 Jet 2 E_T Jet 1 η Jet 2 η $\Delta \phi(jet1, jet2)$ $\Delta \phi(\not{E}_T, jet1)$ $\Delta \phi(\not{E}_T, jet2)$ Jet 1 Projection onto \not{E}_T Jet 2 Projection onto \not{E}_T \not{E}_T magnitude

Improve the Dijet Mass (2)

Higgs mass	L5 jetcorr	Gen 5 NN	Gen 6 NN
110	17.2~%		10.8~%
120	17.7 %	10.5%	10.5~%
130	17.3~%		9.7~%
150	16.8~%	10.0%	$9.5 \ \%$

- Default trigger for Z→µ⁺µ⁻
 requires at least one muon
 with "stub" in muon
 chambers
- The other muon can be "loose"
- Allowing two loose IS
 possible but requires a
 different trigger → MET
 +jets

- Default trigger for Z→µ⁺µ⁻
 requires at least one muon
 with "stub" in muon
 chambers
- The other muon can be "loose"
- Allowing two loose IS
 possible but requires a
 different trigger → MET
 +jets

Looking for Loose Muons

Tuesday, March 22, 2011

Reconstruct Z candidate using two <u>loose</u> muons AND non-muon trigger!

	High <i>S/√B</i>			Low S/√B		
ZH	0.7	±	0.1	0.1	±	0.02
tŦ	9.9	±	1.5	4.4	±	0.7
WW	0.02	±	0.003	0	±	0.0
WZ	0.1	±	0.02	0.03	±	0.004
ZZ	3.6	±	0.5	0.7	±	0.1
$Z \rightarrow ll + b\bar{b}$	22.1	±	9.2	4.6	±	1.9
$Z \rightarrow \ell \ell + c \bar{c}$	2.4	±	1.0	0.5	±	0.2
$Z \rightarrow \ell \ell + l.f.$	1.2	±	0.2	0.5	±	0.1
fakes	0.9	±	0.5	2.1	±	1.0
Total Bkg	40.3	±	9.4	12.7	±	2.3
Total Data	37			14		

"Standard" $Z \rightarrow \mu^+ \mu^-$ and $Z \rightarrow e^+ e^-$

	ST Category	LJP Category	DT Category
$Z + q\bar{q}$ (Mistags)	33.8 ± 4.8	2.18 ± 0.8	0.22 ± 0.06
$Z + c\bar{c}$	8.5 ± 3.4	1.8 ± 0.7	0.20 ± 0.08
$Z + b \overline{b}$	17.1 ± 6.9	5.1 ± 2.1	2.29 ± 0.93
$tar{t}$	3.9 ± 0.8	2.3 ± 0.5	1.33 ± 0.28
WW	0.03 ± 0.004	0.01 ± 0.001	
WZ	0.66 ± 0.09	0.08 ± 0.01	-
ZZ	1.82 ± 0.24	0.75 ± 0.10	0.32 ± 0.04
Fakes	0.24 ± 0.12	0.01 ± 0.005	—
ZH_{120}	0.25 ± 0.02	0.14 ± 0.01	0.08 ± 0.007
Total Background	66.1 ± 9.1	12.2 ± 2.4	4.36 ± 0.98
Data	68	5	4

"Loose" Z→µ⁺µ⁻

Single Tight SecVtx	Loose SecVtx + 5% JetProb	Double Tight SecVtx
P_{jj}	\mathscr{E}_{T}	\mathscr{E}_{T}
\mathscr{E}_{T}	M_{jj}	M_{jj}
P_{zh}	P_{tt}	P_{tt}
P_{tt}	P_{jj}	P_{zh}
M_{jj}	$P_T(\text{jet } 1) + P_T(\text{jet } 2)$	$P_T(\text{jet } 1) + P_T(\text{jet } 2)$
Karlsruhe Output		N jets
\mathcal{E}_T projection on Jet 2		Sphericity
$P_T(\text{jet } 1) + P_T(\text{jet } 2)$		

- Start with a large number of possible discriminant variables
- Loop over these to find the single best 1-input NN
- Loop over remaining variables to find the best 2-input NN
- Continue this process, adding variables until the addition of inputs not longer improves the testing error.
- Once the algorithm has found the optimal inputs for each b-tag category the final NNs are trained.

Discriminant

Number of Events

CDF II Preliminary

CDF II Preliminary

CDF II Preliminary

Solid Lines represent observed

Solid Lines represent observed

Solid Lines represent observed

Tuesday, March 22, 2011

Channel	Lum	Obs/SM	Exp/SM
Old $ZH \to \ell\ell b\bar{b}$	1.0 fb ⁻¹	26.0	26.0
New $ZH \to \ell\ell b\bar{b}$	5.7 fb ⁻¹	7.5	6.4

Date	Lum (fb ⁻¹)	Improve ments	95%CL Limit/SM	Improvement beyond Lum (Rel to Jul06)	Improvement beyond Lum (Rel Previous)
Jul 2006	1.0	Neural Network	26		
Jul 2008	2.4	Tagging Categories, NN Jet corrections, Lepton categories	14.5	15%	15%
Jan 2009	2.7	Looser b-tags	12.2	30%	11%
Aug 2009	4.1	Add JetProb tags, Matrix elements, flavor seperator	8.5	51%	16%
Jul 2010	5.7	Add trigger, muon NN ID	6.4	70%	13%

CDF: tight double tag (TDT) high $s/b ZH \rightarrow \ell\ell b\bar{b}$ channel relative uncertainties (%)								
Contribution	Fakes	Top	WZ	ZZ	$Z + b\overline{b}$	$Z + c\bar{c}$	Z + mistag	ZH
Luminosity $(\sigma_{\text{inel}}(p\bar{p}))$	0	3.8	3.8	3.8	3.8	3.8	0	3.8
Luminosity Monitor	0	4.4	4.4	4.4	4.4	4.4	0	4.4
Lepton ID	0	1	1	1	1	1	0	1
Lepton Energy Scale	0	1.5	1.5	1.5	1.5	1.5	0	1.5
ZH Cross Section	0	0	0	0	0	0	0	5
Fake Leptons	50	0	0	0	0	0	0	0
Jet Energy Scale (shape dep.)	0	$^{+1.5}_{-1.1}$	$^{+0.0}_{-0.0}$	$^{+1.8}_{-2.7}$	$^{+5.9}_{-6.9}$	$^{+6.0}_{-6.0}$	0	$^{+1.6}_{-0.3}$
Mistag Rate (shape dep.)	0	0	0	0	0	0	+30.9 -26.8	0
B-Tag Efficiency	0	8	8	8	8	8	0	8
$t\bar{t}$ Cross Section	0	10	0	0	0	0	0	0
Diboson Cross Section	0	0	6	6	0	0	0	0
$\sigma(p\bar{p} \rightarrow Z + HF)$	0	0	0	0	40	40	0	0
ISR (shape dep.)	0	0	0	0	0	0	0	-2.1 +0.4
FSR (shape dep.)	0	0	0	0	0	0	0	-0.7

Some Interesting Events

Adding Acceptance: NN

- Current analysis uses muon
 NN only for
 - Loose muon which is partnered with tight muon from muon triggered events
 - Loose-Loose muons which come from MET+jets triggered events
- Will remove tight cut requirements
 - >All muons passed through muon NN

- Current analysis uses
 specific triggers coming
 in on two streams:
 - High Pt Muon trigger in muon stream
 - MET+jets from MET stream
- Will Switch to "streambased" trigger selection
 - Accept any trigger from the above streams
 - Play two streams off one another to measure trigger efficiency

- Currently: Use single discriminant tuned for a higgs mass of 120 GeV.
- Improvement: Use mass dependent discriminants
 - >Impact is modest at low mass: ~5%
 - Substantial impact at high mass: ~50%

ZH MUON ANALYSIS IMPROVEMENTS						
Data Increase	12%					
Adding Loose + Loose Zs	~20%					
Adding Muon NN ID	~20%					
Stream Triggers	~10%					
ACCEPTANCE IMPROVEMENTS	~60%					
Mass-Optimized Discriminants Sensitivity Increase	~5% (low mass), ~50% (high mass)					
EXPECTED LIMIT IMPROVEMENT	30% (120 GeV) - 60% (200 GeV)					

- The plot below shows the full impact of these improvements on the ZH muon channel alone.
- Demonstrates that significant improvements are possible using existing tools and techniques in a very mature analysis

- No High P_T Leptons
- Large Missing E_T
- 2/3 Jets, 1/2 b-tags

Features:

- Trigger is more challenging
 Large QCD/Fake Bkg: Difficult
 Simulate: <u>use data</u>
- 3. Use tracks to help bkg identification.
- 4. Large contribution (~50%) from WH
- 5. ~10 evts/ 6fb⁻¹ (double tags)

 $\bar{\mathbf{q}}$ H $\bar{\mathbf{b}}$ $\overline{\mathbf{b}}$ $\overline{\mathbf{b}$ $\overline{\mathbf{b}}$ $\overline{\mathbf{b}}$ $\overline{\mathbf{b}}$ $\overline{\mathbf{b}$ $\overline{\mathbf{b}}$ $\overline{\mathbf{b}}$ $\overline{\mathbf{b}$ $\overline{\mathbf{b}}$ $\overline{\mathbf{b}}$ $\overline{\mathbf{b}$ $\overline{\mathbf{b}}$ $\overline{\mathbf{b}}$ $\overline{\mathbf{b}$ $\overline{\mathbf{b}}$ $\overline{\mathbf{b}}$ \overline

ZZ, WZ, WW

- No High P_T Leptons
- Large Missing E_T
- 2/3 Jets, 1/2 b-tags

Features:

- Trigger is more challenging
 Large QCD/Fake Bkg: Difficult
 Simulate: <u>use data</u>
- 3. Use tracks to help bkg identification.
- 4. Large contribution (~50%) from WH
- 5. ~10 evts/ 6fb⁻¹ (double tags)

Primary BackgroundsQCD Heavy Flavor, $t\bar{t}, W/Z + b\bar{b}/c\bar{c},$ Single Top,ZZ, WZ, WW

 $WH \to \ell \nu b \bar{b}$

- High P_T Lepton
- Missing E_T
- 2/3 Jets, 1/2 b-tags

Good Acceptance
 Final state similar
 to single top prod.
 3. ~5 evts/ 6 fb⁻¹ (dbl tags)

- High P_T Lepton
- Missing E_T
- 2/3 Jets, 1/2 b-tags

Features:

Good Acceptance
 Final state similar
 to single top prod.
 3. ~5 evts/ 6 fb⁻¹ (dbl tags)

 $ZH \rightarrow \nu \nu bb$

 $WH \rightarrow \ell \nu bb$

Other Low Mass Channels

Experiment	Lum	Obs/SM	Exp/SM
CDF Metbb	5.7 fb ⁻¹	2.3	4.0
CDF WH	5.7 fb ⁻¹	3.6/4.5	3.5/3.4

• Other decay chains are also being considered • IF the SM is correct, these are not as sensitive • BUT, <u>every little bit</u> helps and nature could be different.

Higgs Production via ttH

ttH Search Strategy

40

45

TagID

50

3SV

35

30

-tt

ttH120

9

Number of Jets

10

8

ttH120

tt

Lepton+MET+>=4Jets+>=2tags...Mostly top

Lepton+MET+>=4Jets+>=2tags...Mostly top

Tagging Contributions for ttH

4th Step...Channel Combination

No Single Decay Channel Has Sufficient Power to reach the SM prediction.

4th Step...Channel Combination

4th Step...Channel Combination

 No Si
Statistically Combine Channels.
Ouse a procedure to properly account for correlated uncertainties.

Latest High Mass Combination

- Ivbb, METbb, and Ilbb channels included
- Inject SM*1.0 signal at m_H=115 GeV on top of SM backgrounds, and generate pseudoexperiments with that.
- Analyze 115 signal+background pseudoexperiments at other test masses –100 GeV to 150 GeV
- Find the median expected limit with injected signal and compare with the distribution of limits when the signal is completely absent.

Future Expectations

Delivered luminosity now ~9 fb⁻¹ per experiment Tevatron will deliver ~11 fb⁻¹ per experiment by September 2011

Tuesday, March 22, 2011

Future Prospects

	Department of Energy Office of Science Washington, DC 20585 JAN 6 2011	Office of the Director
Professor Melvy	n Shochet	
Chairman, High	Energy Physics Advisory Panel	
Department of P	hysics	
University of Ch	lcago	
Chicago H (QC)	e	
Chicago, IL 606.	57	
Dear Professor S	hochet:	
I am writing to c	onvey the Office of Science's response to the rec	ent High Energy

Unfortunately, the current budgetary climate is very challenging....operation of the Tevatron will end in September...

Tevatron be approved only if additional funds were available to HEP, and encouraged the funding agencies to find the necessary resources. Unfortunately, the current budgetary climate is very challenging and additional funding has not been identified. Therefore, based in part on the P5 recommendation, operation of the Tevatron will end in FY 2011, as originally scheduled.

The strategic plan for the U.S. particle physics program, developed by P5, attacks the most important scientific questions in three broad areas of the field: the Energy, Intensity,

- Tevatron program continues to play a strong role in Higgs Physics
- We are continuing to expand the exclusion of the Higgs at high mass
- We are continuing to push on a variety of improvements at low mass
- The experience with the ZH search discussed implies that there are still large improvements which can be made to existing searches at the Tevatron
- Broader implications for searches in progress at the LHC are left to grad students in the audience!