Early Results and Prospects from BESIII

Roy A. Briere

Carnegie Mellon

(+ CLEO & BESIII)

University of Pennsylvania 29 Mar 2011

Institute of High Energy Physics Chinese Academy of Sciences

Outline

Introduction: Collaborating in Beijing

Status: The BEPCII Accelerator & BESIII Detector

Selected Charmonium Physics Results

First Open Charm Data

Conclusions

more info: <u>http://bes3.ihep.ac.cn/</u>

Introduction: Collaborating in Beijing

BESIII Collaboration

- 29 Chinese groups (IHEP host lab + Universities)
- 10 European groups (5 German, 2 Italian, 2 Russian, 1 Dutch)
- 6 US groups (CMU, Uminn, Roch, Indiana, Hawaii, Wash)
- **3 other Asian** (Japan, S. Korea, Pakistan)
 - Still adding new groups...
- First papers: 36 groups (of 45 listed above) 293 Authors; 148 from IHEP

CLEOns / other US @ BESIII

Carnegie Mellon: Briere

- U. Minn: Poling, Cronin-Hennessy
- U. Rochester: Thorndike

Indiana U.: Shepherd, Mitchell

Other US groups: (from before BESIII ...) Hawaii (F. Harris only PI; S. Olsen now in Korea), U. Washington (small: 1 author)

Collaboration meetings

- > 2 per year; 1 @ IHEP, 1 @ Chinese university recently: early summer & late fall
- > 2 additional "physics/software" workshops per year

Lots of "video" conference meetings (or just audio +pdf)

Working in Beijing

My Trips to China: (mostly Beijing, + some train trips) Mar07 (exploratory) Jan08 (join), Oct08 Mar09, Jul09, Oct09 Jun10, Oct10 Jun11

A few years ago, I thought I was "unlikely" to join... But, after my first trip, I felt very comfortable with:

- > People, lab, communication [enough English !]
- > (real) Chinese food [incl. pigeon, jellyfish, duck tongue (!), ...]
- > Playing tourist in Beijing [many new subway lines: big help]

I did develop one new concern:

> Most senior people have another project !

(Daya Bay, LHC, ...)

BUT... it's a large collaboration, hard-working, ...

Welcoming signs...

Green Transportation...

Exotic foods... (if scorpions: live until fried)

Fred Gilman even found me a Blues Band to jam with...

(really...he did!)

New book By guitarist

Treasures at Panjiayuan "Ghost Market" or "Dirt Market"

Yes, China is becoming more "capitalist"... but it's still a bit different than the West...

Text is:

Professional comment: One of every six coffee drinkers will love Brazil coffee!

> Don't try that on Madison Ave. !

But 1/6 of the Chinese market would actually be pretty good ...

More on (sic) Working in Beijing

Collaboration meetings

- > 2 per year; 1 @ IHEP, 1 @ Chinese university
- > 2 additional software workshops per year

Lots of "video" conference meetings (or just audio +pdf)

- > Beijing is EDT+12 hrs (EST+13) easy to remember, hard to do!
- > ~bi-weekly Physics/Software meeting
- > ~bi-weekly analysis meetings (charm, charmonium, light hadrons)

I tried to take Chinese last fall, on sabbatical

- > Characters and a tonal language: tough combination
- > I did learn a lot more than I had picked up on the fly
- > I can bargain with Chinese numbers now when I'm shopping
- > Big improvement over just knowing: hello, thank you, beer

Status: The BEPCII Accelerator & BESIII Detector

BEPC II

Key features vs. CESR-c

- > Two-Ring machine (BEPC \rightarrow BEPCII)
- Smaller radius (built for low energy, unlike CESR-c)
 So equal stored current is fewer particles than CESR...
 But, collision frequency is correspondingly higher
- > Smaller beam-energy spread

Greater effective J/ ψ and ψ ' cross-sections Better beam-constrained mass distribution at ψ (3770)

Design: $10 \ge 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ Achieved: $5.5 \ge 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ CLEO-c: $0.7 \ge 10^{32} \text{ cm}^{-2}\text{s}^{-1}$

What I miss:

- > Control room is not as close to counting room
- > Can't read an online machine log

So... it's hard to get as good of a feeling of what's happening ! But I can see currents, luminosity, etc. in real time

BEPC II Storage ring:

Large crossing angle, double-ring

Beam energy: 1 - 2 GeV Luminosity: 1 x 10³³ cm⁻²s⁻¹ **Optimum energy: 1.89 GeV Energy spread:** 5.16 x 10⁻⁴ No. of bunches: 93 **Bunch length:** 1.5 cm **Total current: 0.91** A

SR mode: 0.25A @ 2.5 GeV

Progress Since Startup

NOTE: Luminosity is lower at J/ψ Energy Machine is optimal near $\psi(3770)$

Currents and Inst. Luminosity (Best Day)

Recent ψ (3770) Running Parameters

Reference point: $\mathcal{L} = 5 \times 10^{32} / \text{cm}^2 / \text{s}$

IF No lumi decay, gaps between fills, perfect efficiency: this gives 0.5 nb/s = 43. pb⁻¹/day
Time filling beams, ramping HV: 20-25% loss (CLEO-c was smaller)
Luminosity decay, smaller peaks: 20-25% loss
Down-time: 5% loss

Our best WEEK averaged about 23. pb⁻¹/day Our best MONTH averaged about 20. pb⁻¹/day 0.6 fb⁻¹/month !

Biggest gains in view now:

- -- Have seen peak at 0.55 many times, and even near 0.60
- -- Need to sustain the best week/month for longer!

Ι	it. Lumi. during	
-	best week	
-		

Luminosity per Week: 06Dec2010 - 27Mar2011

About 100 pb⁻¹ was CLEO-c's best *month*

BESIII detector

CsI(Tl) calorimeter, 2.5% @ 1 GeV

BESIII Detector, vs. CLEO-c

Key features vs. CLEO-c

- > All-in-one drift chamber
- > TOF, not RICH, to aid dE/dx fir particle ID
- > Gap between CsI barrel and endcap
- > More ambitious muon system

Design and Construction of the BESIII Detector NIM A614 (2010) 345-399

Chinese Physics C also has many (~20) articles on tests, software, calibration, MC studies, etc.

Spokesperson Yifang Wang in front of BESIII (Jan'08)

BESIII Counting Room

First collision event on July 19, 2008

13 Million $\psi(2S)$ events collected in 2008 (engineering data)

dE/dx Calibration

Manpower: postdoc Chunlei Liu & RAB from CMU and a few IHEP people (typically student + supervisor)

Note: I've looked at J/ψ data with 2 undergrads; good practice for me...

Charmonium Physics

Charmonium Spectrum

Two narrow charmonium states: spectroscopy, low-mass hadrons Open charm phyiscs $\psi(3770)$ is a good source of D mesons.

Charmonium Samples

2008:

Startup in July, only engineering data in '08

2009:

~105 M ψ' (vs. 27 M @ CLEO-c) ~225 M J/ ψ (vs. 58 M @ BESII: w/ poor EMC) Also, intensive tuning to reach benchmark luminosity goal (30% design) to satisfy funding agencies

Beam-energy spread a bit smaller than CESR-c, so effective cross-section is a bit higher... [~10%?]

Synchrotron runs are separate; about 5+ months of HEP physics running per calendar yea (like CLEO-c, some things never change... though synch. is low-E here...)

h_c : Introduction

Last low-lying charmonium state; found by CLEO-c 2005 (hints at Fermilab p-bar accumulator exp't)

 $^{2S+1}\mathcal{L}_{J}$: ψ $^{3}S_{1}$ χ_{c} $^{3}P_{0,1,2}$ η_{c} $^{3}S_{1}$ h_{c} $^{1}P_{1}$

BES analysis: Inclusive: $\psi' \rightarrow \pi^0 h_c$ using π^0 recoil mass E1-tagged: inclusive, plus see γ from $h_c \rightarrow \gamma \eta_c$ Use both to get separate absolute Branching Fractions

Data Samples: (106 ± 4) Million ψ' 42.6 pb⁻¹ @ 3.65 GeV

h_c Analysis Cuts

Barrel γ : $E_{\gamma} > 25 \text{ MeV}$ $|\cos\theta| < 0.80$ Endcap γ : $E_{\gamma} > 50 \text{ MeV}$ $0.86 < |\cos\theta| < 0.92$ Isolation:>10° from any track

 $\pi^{0}: 120 - 145 \text{ MeV} \qquad (\text{ about } -1.5 \text{ to } +2.0 \text{ } \sigma) \\ 1-C \text{ kinematic fit improves E resolution} \\ \text{ raise barrel cut to } E_{\gamma} > 40 \text{ MeV} \\ \text{ [also ``no other } \pi^{\circ} \text{ veto'' for all transition } \gamma, \text{ plus } \pi^{\circ} \text{ in incl. analysis]}$

Candidate events:

a) at least two tracks, at least one passing: [cosθ] < 0.93 [Δz] < 10 cm [Δr] < 1 cm
b) >0.6 GeV in EMC
Background suppression (di-pion transitions) : π⁺π⁻ (π⁰π⁰) recoil mass >7 (>15) MeV from J/ψ mass

h_c Recoil-Mass Plots

FIG. 1: (a) The π^0 recoil mass spectrum and the fit for the *E*1-tagged analysis of $\psi' \to \pi^0 h_c$, $h_c \to \gamma \eta_c$; (b) The π^0 recoil mass spectrum and fit for the inclusive analysis of $\psi' \to \pi^0 h_c$. Fits are indicated by solid lines, background by dashed lines. The respective background-subtracted spectra are shown in the insets.

E1-tagged: 3679 ± 319 events fit χ^2 = 33.5/36 efficiency = 7.57 % Gives product BF Inclusive: 10353 ± 1097 fit $\chi^2 = 24.5/34$ efficiencies: 12.89% (E1 h_c) 10.02% (hadr. h_c) Gives h_c production BF, but efficiency weighting

depends on h_c decay BF!

h_c Systematics

FIG. 2: Comparisons between MC (lines) and data (dots): (a) energy distribution of the radiative photon in $\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow \gamma J/\psi, J/\psi \rightarrow l^+ l^-$; (b) energy distribution of the radiative photon in $\psi' \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow \gamma J/\psi, J/\psi \rightarrow l^+ l^-$; (c) invariant mass distribution of π^0 in $\psi' \rightarrow \pi^0 \pi^0 J/\psi, J/\psi \rightarrow l^+ l^-$;

Study Samples:

 π^{0} efficiency, resolution $\psi' \rightarrow \pi^{0}\pi^{0} J/\psi, J/\psi \rightarrow II$

E1 photon selection: $e^+ e^- \rightarrow e^+ e^- \gamma$

(normalize with recoil mass)

TА	BLE	I:	Summary	of	systematic	errors.
----	-----	----	---------	----	------------	---------

Source	$M(h_c)({ m MeV}/c^2)$	$\Gamma(h_c)({ m MeV}/c^2)$	$\mathcal{B}_1(10^{-4})$	$\mathcal{B}_1 imes \mathcal{B}_2(10^{-4})$	$\mathcal{B}_2(\%)$
Background shape and fit range	0.11	0.23	0.4	0.22	4.4
Energy scale, position reconstruction and 1-C fit	0.13	0.06	0.5	0.10	2.1
Energy resolution	0.00	0.15	0.2	0.03	1.0
Background veto	0.05	0.03	0.0	0.03	0.3
π^0 efficiency	0.00	0.00	0.3	0.14	0.0
E1 photon efficiency	0.00	0.00	0.0	0.10	1.2
Number of π^0	0.00	0.00	0.6	0.35	0.6
Number of charged tracks	0.00	0.00	0.1	0.06	0.1
$N(\psi')$	0.00	0.00	0.4	0.19	0.0
$M(\psi')$	0.03	0.02	0.0	0.00	0.0
$M(\eta_c)$ and $\Gamma(\eta_c)$	0.00	0.00	0.0	0.01	0.3
Total systematic error	0.18	0.28	1.0	0.50	5.2

h_c Results

B($\psi' \rightarrow \pi^0 h_c$) = (8.4 ± 1.3 ± 1.0) × 10⁻⁴ B($h_c \rightarrow \gamma \eta_c$) = (54.3 ± 6.7 ± 5.2) % **

M(h_c) = (3525.40 ± 0.13 ± 0.18) MeV [CLEO: 3525.20 ± 0.18 ± 0.12]

Hyperfine splitting: $[\langle M({}^{3}P_{1}) \rangle$ is the spin-weighted mass] $\langle M({}^{3}P_{1}) \rangle - M({}^{1}P_{1}) = -0.10 \pm 0.13 \pm 0.18$

 $\Gamma(h_c) < 1.44 \text{ MeV } 90\% \text{ CL} (0.73 \pm 0.45) \text{ MeV} **$

** Similar to values for $B(\chi_{c1} \rightarrow \gamma J/\psi)$ and $\Gamma(\chi_{c1})$

$\chi_{c0}, \chi_{c2} \rightarrow \pi^0 \pi^0, \eta\eta$: Analysis

 χ_{c1} modes forbidden by spin-parity

Cuts generally similar to h_c analysis...' Use decay angle cuts on π^0 , η

 5 or 6 photons, no charged tracks efficiencies ~ 50% (no need for isolation cuts!)
 A "p_t²" cut reduces missing particle background (based on angle between π⁰π⁰ recoil and radiative photon)

 $\chi_{c0}, \chi_{c2} \rightarrow \pi^0 \pi^0, \eta \eta$: Systematics

Mode	$\chi_{c0} \to \pi^0 \pi^0$	$\chi_{c2} \to \pi^0 \pi^0$	$\chi_{c0} \rightarrow \eta \eta$	$\chi_{c2} \rightarrow \eta \eta$
photon detection	5	5	5	5
$\pi^0(\eta)$ reconstruction	2	2	2	2
$p_{t\gamma}^2$	0.9	1.2	0.1	0.3
$\chi_{\eta\eta}$	-	-	0.6	2.6
signal shape	1.6	1.2	1.4	1.5
background shape	0.5	0.5	0.2	0.3
fitting range	0.3	0.3	0.8	1.3
trigger	0.1	0.1	0.1	0.1
$N_{\psi'}$	4	4	4	4
Total	7.0	6.9	6.9	7.5

TABLE II: Systematic uncertainties expressed in percent.

Study Samples:

photon detection, conversion: $J/\psi \rightarrow \rho^0 \pi^0$ & e^+ e^- $\rightarrow \gamma \gamma$

$\chi_{c0}, \chi_{c2} \rightarrow \pi^0 \pi^0, \eta \eta$: Results

TABLE III: Branching fraction results (in units of 10^{-3}) for each decay mode. The uncertainties are statistical, systematic due to this measurement, and systematic due to the branching fractions of $\psi' \to \gamma \chi_{cJ}$, respectively. CLEOc results are determined using their own branching fractions for $\psi' \to \gamma \chi_{cJ}$, while ours are determined using branching fractions from the PDG. If we use the CLEOc branching fractions, we find $Br(\chi_{c0} \to \pi^0 \pi^0) = 3.29 \times 10^{-3}, Br(\chi_{c0} \to \eta \eta) = 3.51 \times 10^{-3},$ $Br(\chi_{c2} \to \pi^0 \pi^0) = 0.78 \times 10^{-3}$, and $Br(\chi_{c2} \to \eta \eta) = 0.58 \times 10^{-3}$. Mode χ_{c0} χ_{c2} $\pi^{0}\pi^{0}$ This Work $3.23 \pm 0.03 \pm 0.23 \pm 0.14$ $0.88 \pm 0.02 \pm 0.06 \pm 0.04$ 3 errors $2.94 \pm 0.07 \pm 0.32 \pm 0.15$ $0.68 \pm 0.03 \pm 0.07 \pm 0.04$ CLEOc [2] PDG [10] 2.43 ± 0.20 0.71 ± 0.08 This Work $3.44 \pm 0.10 \pm 0.24 \pm 0.13$ $0.65 \pm 0.04 \pm 0.05 \pm 0.03$ $\eta\eta$ CLEOc [2] $3.18 \pm 0.13 \pm 0.31 \pm 0.16$ $0.51 \pm 0.05 \pm 0.05 \pm 0.03$ PDG [10] 2.4 ± 0.4 < 0.5

Bit higher than CLEO; closer when consistent $\psi' \rightarrow \gamma \chi_c$ BF used BUT: we both agree old PDG is mostly too low... (3 of 4 cases)

$J/\psi \rightarrow \gamma p \bar{p}$: "Teaser Plots" (shown at CHARM 2009, FPCP2009)

 $J/\psi \rightarrow \gamma p \overline{p}$

Low-mass ppbar enhancement seen in BESII But, NOT seen in ψ' decays

Ironically, we confirm with ψ'-tagged J/ψ, with no mention of analogous ψ' decay in the paper... (but it's still absent! You saw "teaser plots" from '09 confs)

Also NOT observed in other cases: $p\bar{p}$ cross-sections, B decays, $\Upsilon \rightarrow \gamma p \bar{p} J/\psi \rightarrow \omega p \bar{p}$ Dis-favors a pure final-state interaction (FSI) explanation

$J/\psi \rightarrow \gamma p \overline{p}$

FIG. 2: The $p\bar{p}$ mass spectrum near threshold for: (a) selected $\psi' \to \pi^+\pi^- J/\psi(J/\psi \to \pi^0 p\bar{p})$ events for the same real data sample. (b) phase-space MC $\psi' \to \pi^+\pi^- J/\psi(J/\psi \to \gamma p\bar{p})$ events that satisfy the $\gamma p\bar{p}$ selection criteria. The smooth curves are the results of the fit described in the text.

Control sample: $J/\psi \rightarrow \pi^0 p \overline{p}$

FIG. 3: The $p\bar{p}$ invariant mass spectrum for the $\psi' \rightarrow \pi^+\pi^- J/\psi(J/\psi \rightarrow \gamma p\bar{p})$ after final event selection. The solid curve is the fit result; the dashed curve shows the fitted back-ground function, and the dash-dotted curve indicates how the acceptance varies with $p\bar{p}$ invariant mass.

S-wave B-W fit: M = 1861⁺⁶₋₁₃⁺⁷₋₂₆ MeV Γ < 38 MeV

It's certainly fair to discuss the best way to fit this, but clearly something is happening near threshold !

2010-11: First Open Charm Data Runs

Open Charm: Statistics

2010 Data sample: 920 pb^{-1} (on peak) CLEO-c = 818 pb^{-1} **75** pb⁻¹ (scan)

2011 Data sample: >1500 pb⁻¹ (thru Sunday 27 Mar) 300-500 pb⁻¹ (next few weeks**) Then, running at ~4010 MeV, few \times 100 pb⁻¹ (for spectroscopy, D_s physics) and ~ 2 weeks for tau mass

(BEPCII/BESIII has new beam-energy measurement system) >> 2010-11 ψ (3770) Data sample: already 3x CLEO-c

2012: likely back to J/ψ -- go for 1 Billion

(take that, Dr. Evil)

** not clear when switchover will be...

Open Charm: Tagging

Only enough energy for D Dbar pair: can't even have one additional pion !

"D tagging": fully reconstruct one hadronic D decay: 10-15% (efficiency × BF) per D

Key variables:(just like B factories!)> E = $E_{cand} - E_{beam}$ peaks @ 0 : E conservation> M_{bc} = $sqrt(E_{beam}^2 - p_{cand}^2)$ peaks @ M_D : p conservation

Result:

- > Remove continuum very effectively
- > Know direction of other D (magnitude of p known a priori)
- > Can do final states with neutrinos by 4-mom. balance
- > Can get precision absolute hadronic BFs

single vs. double tags: # DD pairs is cancelled by algebra

BESIII Single Tags

Charm as a QCD Lab I Leptonic D Decays

use LQCD f_B here

for V_{td}, V_{ts}

f_D is a "decay constant":

chance that quarks are at same place $\sim |\psi(0)|^2$: square of wavefunction at origin (need quark overlap, since weak interaction is short-range) Precision Lattice QCD test: need LQCD for $f_{B,} f_{Bs}$ NOTE: B factories only do D_s , not D^+ -- want both !!

CLEO-c $D^+ \rightarrow \mu^+ v$

PRD 78, 052003 2008 818 pb⁻¹

1630608-013

Neutrino from 4-momentum balance can plot (missing mass)²: MM²

Signal side is one track + unobserved neutrino Veto on extra unmatched showers > 250 MeV

>>> D-tagging gives a clean, isolated signal peak

Charm as a QCD Lab II Semileptonic D Decays

Form factors, CKM FF help w/ B decays

"Form Factor":

~ Chance that quarks stay bound into a given final state Relate $B \Rightarrow \pi e v$ to $D \Rightarrow \pi e v$ **for V**...

Also, ratios of $D \Rightarrow \pi e v$ to $D \Rightarrow \mu v$ and $D \Rightarrow Kev$ to $D_s \Rightarrow \mu v$ cancel CKM elements: Pure LQCD tests...

Pre-CLEO-c Semileptonic results

PRL 94, 011802

(2005)

 $D^0 \rightarrow K^- e^+ v$ $D^0 \rightarrow \pi^- e^+ v$

Decays with K are 10x more common than π : Separate via "particle ID" techniques (hard) CLEO-c: excellent kinematic separation!

CLEO-c $D^{0,+} \rightarrow h e^+ v$

PRD 79, 052010 2008 281 pb⁻¹

Threshold charm: Gives kinematic separation of K, π

Prospects for Flavor Physics

Look at the size of the stat / syst / FSR errors from CLEO-c

ψ(3770):	D ⁰ and D ⁺ ph	ysics with 818 pb ⁻¹	
** f _D	(D + → μν):	$(\pm 4.1 \pm 1.2)\%$	
ψ(3770):	D ⁰ and D ⁺ ph	ysics with 281 pb ⁻¹	
** f(q ² =0)) $(\mathbf{D}^0 \rightarrow \pi \mathbf{l} \mathbf{v})$:	$(\pm 5.0 \pm 0.9 \pm 0.4)\%$	[3-par. series fit]
Br(D ⁰	\rightarrow K π):	$(\pm 0.9 \pm 1.5 \pm 0.9)\%$	
Br(D+	$\rightarrow K\pi\pi$):	$(\pm 1.1 \pm 1.8 \pm 0.8)\%$	

@4170 MeV: D_s physics with ~ 600 pb⁻¹ * f_{Ds} (D_s⁺ → µν,τν): (± 2.5 ± 1.2)% * Br (D_s⁺ → KKπ): (± 4.2 ± 2.9)%

Often significant gains to be made with increased data samples, even if systematic errors are simply matched, not improved.

ALSO: analyses using Quantum Correlation, C-tags, etc. are ALL statistics-starved at CLEO-c

Peak Scan and non-DDbar Decays

These will likely be the first results from the $\psi(3770)$ data

Scan:

- > Much more data than KEDR, CLEO-c
- > Lineshape: 2 DD thresholds, may be interesting state?
- > D⁰/D⁺ production ratio vs. Energy

Non-DD decays:

- > Some modes seen (radiative, dipion, ...)
- > Some disagreement (BESII vs. CLEO-c) on inclusive non-DD
- > 3x CLEO-c data to search further

BESIII Physics Papers

BESIII Publications

Observation of a $p\overline{p}$ Mass Threshold Enhancement in $\psi' \to \pi^+\pi^- J/\psi(J/\psi \to \gamma p\overline{p})$ Decay M. Ablikim *et al.*, Chinese Physics C 34, 421 (2010).

Branching Fraction Measurements of χ_{c0} and χ_{c2} to $\pi^0 \pi^0$ and $\eta \eta$ M. Ablikim *et al.*, Physical Review D **81**, 052005 (2010).

Measurements of $h_c({}^1P_1)$ in ψ' Decays M. Ablikim *et al.*, Physical Review Letters **104**, 132002 (2010).

Evidence for ψ' Decays into $\gamma \pi^0$ and $\gamma \eta$ M. Ablikim *et al.*, Physical Review Letters **105**, 261801 (2010).

Measurement of the Matrix Element for the Decay $\eta' \rightarrow \eta \pi^+ \pi^-$ M. Ablikim *et al.*, Physical Review D 83, 012003 (2011).

First Observation of the Decays $\chi_{cJ} \to \pi^0 \pi^0 \pi^0 \pi^0$ M. Ablikim *et al.*, Physical Review D 83, 012006 (2011).

Study of $a_0(980) - f_0(980)$ Mixing M. Ablikim *et al.*, Physical Review D **83**, 032003 (2011).

Confirmation of the X(1835) and Observation of the Resonances X(2120) and X(2370)in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ M. Ablikim *et al.*, Physical Review Letters **106**, 072002 (2011).

Conclusions

Detector and accelerator successfully commissioned; a few teething pains, but no show-stoppers

World's best Charmonium data samples; already publishing results

High-statistics open-charm physics data run in progress

Stay tuned for more! Should be a big wave of results for summer conferences...

BACKUP SLIDES

Some performance numbers are plots are out-dated... Included mostly for pictures !

BESIII Detector

Design and Construction of the BESIII Detector NIM A614 (2010) 345-399

Drift chamber

- To measure the momentum of charged particles by its bended curvature in a magnetic field
- 7000 Signal wires: 25 µm gold-plated tungsten
- 22000 Field wires: 110 µm Al
- Gas: He + C_3H_8 (60/40)
- Momentum resolution@1GeV:

$$\frac{\sigma_{P_t}}{P_t} = 0.32\% \oplus 0.37\%$$

Babar: ~110 μm BELLE: ~130 μm CLEO: ~110 μm BESIII: ~130 μm

dE/dx Performance

BESIII CsI(Tl) crystal calorimeter

- To measure the energy of electromagnetic particles
- Barrel: 5280 crystals_Endcap: 960 crystals
- Crystal: $(5.2 \times 5.2 6.4 \times 6.4) \times 28 \text{ cm}^3$
- Readout: 13000 Photodiodes, 1 cm × 2 cm,
- Energy range_20MeV 2 GeV
- position resolution: 6 mm @ 1 GeV
- Tiled angle: theta ~ 1 3° , phi ~ 1.5°

EMC calibration

Data / MC comparison

PID: TOF system

- Barrel: 2 x 88 BC408, 2.4 m long x 5 cm thick
- Endcap: 2 x 48 BC408
- PMT: Hamamatzu R5942

Expt.	L (cm)	Resolution
BESIII	240	90 ps
CLEOII	280	139 ps
OBELIX	300	170 ps
BELLE	255	90~100 ps
CDFII	279	100 ps
HARP	180-250	160 ps

TOF calibration

μ system : RPC

- 9 layer, 2000 m²
- Special bakelite plate w/o lineseed oil
- 4cm strips, 10000 channels
- Noise less than 0.1 Hz / cm²

MUON Chamber

