Search for a heavy gauge boson $W' \rightarrow \ell v$ at $\sqrt{s} = 7 \text{ TeV}$

Peter Wittich for the CMS Collaboration

Cornell University Laboratory for Elementary-Particle Physics Penn Seminar April 21, 2011

Low-hanging fruit: W' $\rightarrow ev$

- Search for new physics that looks like a carbon copy of SM W in its leptonic decay mode
 - trigger on high-pt electron/muon
 - require sizable missing ET (MET)
- Easy signal in early data
 - few backgrounds, few objects
 - Can even do the search without MET if required
- Theoretically well motivated
- Even with modest 2010 data sets we expected to be competitive with Tevatron
- Good thesis topic for a more senior graduate student!

Theories with new gauge bosons

- Heavy gauge bosons frequently predicted in new physics models
- Left-right symmetry of electroweak interactions
 - Extend the SM gauge group to include right-handed interactions

 $SU(2)_L \times U(1)_Y \rightarrow SU(2)_R \times SU(2)_L \times U(1)_{B-L}$

- Extra dimensions
 - Kaluza-Klein (KK) tower of heavy copies of all SM fields
 - n = KK excitation mode
 - R = size of extra dimension

$$M_{W_n}^2 \sim \frac{n^2}{R^2} + M_{W_0}^2$$

- General extensions of the SM gauge group
 - e.g. Little Higgs models
- We are sensitive in this search to left-handed W'

Previous searches and exclusions

- Direct searches for W' performed at the CDF and D0 experiments at the Tevatron: $\sqrt{s} = 1.96$ TeV
 - W' \rightarrow ev : M_{W'} > 1.12 TeV, CDF with 5.3 fb⁻¹
 - W' \rightarrow tb : M_{W'} > 863 GeV, D0 with 2.3 fb⁻¹

```
doi:10.1103/PhysRevD.83.031102
```

arXiv:1101.0806 [hep-ex]

- Indirect limits (model-dependent)
 - Kaon and B-meson mixing limits in the minimal left-right symmetric model: $M_{WR} > 1.6 2.4$ TeV
 - Big bang nucleosynthesis (BBN) limits based on temperature at which the three vR's decouple, Tdec: $\sqrt{3/4}$

doi:10.1016/j.astropartphys.2005.01.005

$$M_{W_R} > 3.3 \text{ TeV} \left(\frac{T_{dec}}{140 \text{ MeV}} \right)^{3/4}$$

• SN 1987A limits on v_R emission (M_{vR} < 10 MeV): M_{WR} > 16 TeV

doi:10.1103/PhysRevD.39.1229

Dawn of the LHC Era - little bit goes a long way

LHC Performance

History of first run (2009-2010)

- Start at √s=900 GeV in November 2009 (injection energy)
- First high-energy collisions @ \sqrt{s} = 2.36 TeV on 12/14/2009
- First collisions at √s=7 TeV on 3/30/2010
- Delivered 50/pb by end of 2010 (early November) CMS uses 35/pb

History of first run (2009-2010)

- Start at √s=900 GeV in November 2009 (injection energy)
- First high-energy collisions @ \sqrt{s} = 2.36 TeV on 12/14/2009
- First collisions at √s=7 TeV on 3/30/2010
- Delivered 50/pb by end of 2010 (early November) CMS uses 35/pb

	CMS CMS Experiment at the LHC, CERN				
File Edit View Window Help	Delay Run <u>132440</u> Event 3.0s Z events are selected from 119.	2737821 Tue Mar 30 12:50:40 2010 CEST Lumi block id: 124	File Constant Const		
Summary View Add Collection Add Collection Bell HCal Bell HCal Bell HCal Bell Math	Vev		Rho Z		

History of first run (2009-2010)

- Start at √s=900 GeV in November 2009 (injection energy)
- First high-energy collisions @ \sqrt{s} = 2.36 TeV on 12/14/2009
- First collisions at √s=7 TeV on 3/30/2010
- Delivered 50/pb by end of 2010 (early November) CMS uses 35/pb

Run plans in 2011-2012 and beyond

- First 2011 collisions with stable beams on March 13, 2011
- Run pp data taking @ 7 TeV through end of 2012 (TC, HI too)
- Official goal: collect 1 fb⁻¹ by the end of 2011
 - Inst. luminosities of ~ few \cdot 10³³ cm⁻² s⁻¹
 - Pileup already worse than Tevatron at these lumis (10+ interactions/crossing)
- Long shutdown at the end of 2012
- Possibly energy upgrade to $\sqrt{s}=8$ TeV in 2012 run
- No official estimates for integrated lumi goal for 2012
- 15-18 month shut-down starts in 2013
- Run at full energy after this shutdown ($\sqrt{s} = 14$ TeV)

Run plans in 2011-2012 and beyond

• First 2011 collisions with stable beams on March 13, 2011

Run plans in 2011-2012 and beyond

• First 2011 collisions with stable beams on March 13, 2011

- Experiment has > 3000 scientists and engineers
 - 800 graduate students, 182 institutions, 39 countries
- US is largest by country by a wide margin
 - United States (1163, 32%)
 - Italy (443, 12%)
 - Germany (265, 7%)
 - CERN (233, 6%)
 - Russian Federation (207, 6%)
 - France (150, 4.1%)
 - United Kingdom (128, 3.5%)

Collaborators by country of institute

- Experiment has > 3000 scientists and engineers
 - 800 graduate students, 182 institutions, 39 countries
- US is largest by country by a

Collaborators by country of institute

UK

tute

RUS

CERN

DF

- Experiment has > 3000 scientists and engineers
 - 800 graduate students, 182 institutions, 39 countries
- US is largest by country by a

Wi

UK

UK

CMS detector view

- Tracker coverage |η| < 2.5
- Electron coverage $|\eta| < 2.5$
- Hadron coverage $|\eta| < 5.0$
- Muon coverage lηl < 2.4
- Efficient muon (electron) triggering down to 9 (17) GeV at L = 2E32
- 3.8 T solenoid + 76000 crystal ²⁰⁰ ECAL + 200 m² silicon \rightarrow percent-level lepton momentum ¹⁰⁰ resolution at high p_T

putting the μ into CMS

How well do we do with electromagnetic objects?

How well do we do with electromagnetic objects?

How well do we do with electromagnetic objects?

Missing momentum (MET) performance

14

Missing momentum (MET) performance

Search Strategy

W' analysis

- W' \rightarrow ℓ v signature: single, isolated high-p_T lepton + large missing transverse energy
- Performed counting experiment after cutting on transverse mass $M_T = \sqrt{2 \cdot E_T^{ele} \cdot E_T^{miss} \cdot (1 - \cos \Delta \phi_{eE_T^{miss}})}$
- Main, irreducible background: Standard Model W → ℓ v
 An off-peak W (W*) is really just a heavy W (same as W')
 - Cannot differentiate between W* and W' on event-by-event basis
- Analysis performed with the full 2010 dataset, corresponding to an integrated luminosity of 36.1 pb⁻¹

W' Reference model

- Neutrino is light and stable
 - Important in the context of the left-right symmetric model (v_R)
- Coupling of W ' to fermions is the same as for W
 CKM matrix is the same as well
- No mixing between W' and other gauge bosons
 Excludes mixing between W' and either W or Z'
- Decay channels $W' \rightarrow WW$, WZ, and ZZ are suppressed
 - however decays to tb are allowed when kinematically available
- Decay width of W' scales with its mass

$$\Gamma_{W'} = \frac{4}{3} \frac{M_{W'}}{M_W} \Gamma_W$$

 Additional generations of fermions (if exist) are too heavy to be produced

Trigger is simple and robust

- Trigger at LHC is very complex: reject all but 1 in 40,000 events within ms of collision
- Single-object triggers with low momentum cuts usable throughout 2010 run
 - we are still only at few percent of design lumi
 - luxury of early data taking, probably not feasible in 2011+
- Electrons:
 - single electron with loose selection criteria and 15<E_T<22 GeV
- Muons:
 - single loosely id'd muon with 9<p⊤<15 GeV

How to Select High p_T Electrons

Standard electron ID: single electron trigger. Form $_{\text{ECAL}}$ clusters of EM energy \rightarrow combine with pixel hits \rightarrow search for Crystals tracker hits (min 5 hits/track)

 $E_T>25$ GeV, $|\eta|<2.5$ (gaps)

Matching in η, ϕ with a tracker track

Deposits most of its energy in ECAL, very little in HCAL

Shower shape (e⁻ shower more narrow than jets), characteristic shape in η , Φ , depth (H/E)

Isolation in both calorimeter and tracker

Event selection (e and μ)

- Require single good lepton, primary vertex
 - Isolation in both tracker and calorimeter
 - Rejects fake leptons from punch-through
- Use particle-flow missing E_T to estimate v momentum in transverse plane
- 0.4 < p_T/MET < 1.5
 - Select W'-like event topology
 - Effectively a MET cut but sliding with energy of lepton
- ΔΦ(ℓ, MET) > 2.5
 - Reject misreconstructed multijet events

Example Background cutflow (W' \rightarrow ev)

Sample	Preselection	1 Good Ele	$\Delta \phi_{eE_T^{miss}} > 2.5$	$0.4 < E_{\rm T}^{ele} / E_{\rm T}^{miss} < 1.5$
$W \rightarrow e\nu$	- , 47%	64%, 30%	85%, 26%	87%, 23%
				84846.78
Multi-jet	- , $1 \cdot 10^{-3}\%$	$1\%, 2 \cdot 10^{-5}\%$	$38\%, 8 \cdot 10^{-6}\%$	$3\%, 2 \cdot 10^{-7}\%$
				3282.35
$t\overline{t}$	- , 27%	37%, 10%	19%, 2%	54%, 1%
				59.62
$DY \rightarrow e, \mu, \tau$	-, 15%	47%, 7%	32%, 2%	4%, 0%
				150.94
WW, WZ, ZZ	-, 15%	49%, 8%	41%, 3%	59%, 2%
				44.24
$W \to \tau \nu$	- , 2%	27%, 0.6%	60%, 0.4%	77%, 0.3%
				1082.89
$W ightarrow \mu u$	- , 0.3%	$5\%, 2 \cdot 10^{-2}\%$	$54\%, 9 \cdot 10^{-3}\%$	$81\%, 7 \cdot 10^{-3}\%$
				27.29
γ +jets	- , $6 \cdot 10^{-3}\%$	$19\%, 1 \cdot 10^{-3}\%$	$41\%, 5 \cdot 10^{-4}\%$	$1\%, 5 \cdot 10^{-6}\%$
				136.60

Signal cutflow (W' \rightarrow ev)

$M_{W'}({ m TeV}/c^2)$	Preselection	1 Good Ele	$\Delta \phi_{eE_T^{miss}} > 2.5$	$0.4 < E_{\rm T}^{ele}/E_{\rm T}^{miss} < 1.5$
0.6	- , 88%	80%, 70%	94%, 66%	97%, 64%
				191.30
0.7	- , 88%	80%, 70%	95%,66%	97%, 64%
				99.15
0.8	- , 89%	79%, 70%	95%,66%	97%, 64%
				56.46
0.9	- , 90%	79%, 70%	96%, 67%	98%, 66%
				32.92
1.0	- , 90%	79%, 71%	95%,67%	98%, 66%
	6/			19.96
1.1	- , 89%	79%, 70%	96%, 67%	98%, 66%
				12.21
1.2	- , 90%	79%, 71%	96%, 69%	98%, 67%
				8.13
1.3	- , 89%	79%, 70%	96%, 68%	98%, 66%
			0.001 0.001	5.16
1.4	- , 89%	79%, 70%	96%, 67%	98%, 66%
	2004		0.001 0.001	3.24
1.5	- , 89%	79%, 71%	96%, 68%	98%, 67%
	2201	-001 0001	0.001 0.001	2.39
2.0	- , 88%	78%, 69%	96%, 66%	98%, 65%
10				0.34

 μ efficiencies are generally a bit higher (~80%, μ sel)

High p_T electrons

- Optimize lepton selection for searches for new physics
 - high p_T electrons

Data

Scale factor

- Efficiency measurements
- correct for differences between simulation and data

Heep efficiency vs Eta

 $90.6\% \pm 0.6\%$ (stat.)

 0.994 ± 0.006 (stat.) ± 0.002 (syst.)

 $91.4\% \pm 0.3\%$ (stat.)

 0.978 ± 0.003 (stat.) ± 0.002 (syst.)

Cut and Count, signal and background

 Use transverse mass, calculated from lepton and MET, as test statistic

$$M_T = \sqrt{2 \cdot E_T^{ele} \cdot E_T^{miss} \cdot (1 - \cos \Delta \phi_{eE_T^{miss}})}$$

- Need to determine both the shape and the normalization of the transverse mass distributions for our backgrounds
- Electrons: We use a data driven estimate for W and QCD (our dominant backgrounds) for both shape and normalization
 - The other backgrounds are from MC

Background	Shape	Normalization
$W \rightarrow e\nu$	MC with hadronic recoil correction	fit of E_T^{ele}/E_T^{miss}
multi-jet	non-isolated electrons from data	fit of E_T^{ele}/E_T^{miss}
Other backgrounds	MC	\mathbf{MC}

Muons: entirely data-driven background estimate

W shape corrections - hadronic recoil (e and μ)

- Poor agreement in missing ET for $W \rightarrow \ell v$ out of the box
- Apply a correction for calorimeter response and pile-up and underlying event

- Address effects with 'recoil method:'
 - exploit similar Z kinematics to improve the W response with (cleaner) Z data
- Define a vector u: missing ET w/o lepton contribution(s)
- Define u₁ (u₂) as parallel (perpendicular) to axis defined by boson momentum q_T.
- Calculate u₁, u₂ for Z MC, Z data, W MC

Hadronic Recoil, continued

- Model components with Gaussians in boson momentum
 - determine response (mean) and resolution (width) as fcn of boson q_T
 - Determine Z data/MC scale factors to correct W MC response/resolution
- Recalculate MET using MC truth information
 - Correct u: sample truth information as a function of q_T, in both u1 and u2
 - use this corrected u to recalculate MET and then m_T.

Hadronic Recoil, continued

- Model components with Gaussians in boson momentum
 - determine response (mean) and resolution (width) as fcn of boson q_T
 - Determine Z data/MC scale factors to correct W MC response/resolution
- Recalculate MET using MC truth information
 - Correct u: sample truth information as a function of q_T, in both u1 and u2
 - use this corrected u to recalculate MET and then m_T.

Corrected mass template

- Method gives recoil corrected MET on event-by-event basis
 - Use this MET in our event selections (E_T /MET and $\Delta \phi$)
 - Use this MET to create transverse mass template for W → e v
- Comparing M_T distributions with and without correction, agreement with data improves most for 100 < M_T < 150 GeV
 - No big changes in the tails
 - Method does not introduce large M_T events

QCD transverse mass template (e only)

- Use M_T distribution from non-isolated electrons as our template
 Sample enriched in multi-jet events
- As a check, we compare this to the template obtained from instead inverting the $\Delta\eta$ (trk,SC) and $\Delta\phi$ (trk,SC) requirements
 - Decent agreement for orthogonal samples

W and QCD yield extraction (e only)

- Use $E_{\rm T}/MET$ distribution (last step of our selection) to normalize W and QCD $M_{\rm T}$ templates
 - \blacktriangleright Fit data E_T/MET distribution with QCD template (non-iso electrons) and W template (CB function), other backgrounds from

Background expectation (e)

- Dominant background is W $\rightarrow e \nu$
- Backgrounds die off quickly as a function of transverse mass

Sample	> 45	> 200	> 300	> 400	> 500	> 600
$W \rightarrow e \nu$	75609 ± 319	33.7 ± 2.7	$7.19 {\pm} 0.91$	2.52 ± 0.48	$0.88 {\pm} 0.28$	$0.57 {\pm} 0.21$
Multi-jet	7083 ± 3546	6.3 ± 3.3	$1.64 {\pm} 0.93$	$0.47 {\pm} 0.33$	0.23 ± 0.20	0.23 ± 0.20
$W \rightarrow \tau \nu$	1083 ± 80	1.1 ± 0.3	$0.21 {\pm} 0.19$	< 0.13	< 0.08	< 0.08
tī	$60\pm$ 23	4.1 ± 1.7	0.64 ± 0.29	$0.15 {\pm} 0.09$	0.03 ± 0.03	$0.01\!\pm 0.02$
Other bkg	$359\pm$ 73	2.0 ± 0.4	$0.56 {\pm} 0.14$	0.15 ± 0.05	0.06 ± 0.03	0.04 ± 0.03
Total bkg	84194 ± 3563	$47.2{\pm}4.7$	10.24 ± 1.35	3.29 ± 0.61	$1.21\!\pm 0.35$	0.85 ± 0.30

* Other MC bkgs: γ +jets, W $\rightarrow \mu \nu$, Z/ $\gamma^* \rightarrow \ell \ell$, WW, WZ, ZZ, single top, Z+ $\gamma \rightarrow \nu \nu + \gamma$ ** Table includes both statistical and systematic uncertainties added in quadrature (does not include luminosity uncertainty)

Muon backgrounds

- Data-driven method for combined (beam-induced) bgd
 - Find "signal-free" region of MT spectrum (180<M_T<350 GeV)
 - Fit & use parameters to model background shape, empirical shape
 - Extrapolate to "region of interest" (e.g. M_T>600 GeV)
- Estimate # of bgd evens in signal region (w/o relying on MC)

Data-driven background estimate NB: width of W' for higher masses

Muon backgrounds

- Data-driven method for combined (beam-induced) bgd
 - Find "signal-free" region of MT spectrum (180<M_T<350 GeV)
 - Fit & use parameters to model background shape, empirical shape
 - Extrapolate to "region of interest" (e.g. M_T>600 GeV)
- Estimate # of bgd evens in signal region (w/o relying on MC)

Data-driven background estimate NB: width of W' for higher masses

Muon backgrounds

- Data-driven method for combined (beam-induced) bgd
 - Find "signal-free" region of MT spectrum (180<M_T<350 GeV)
 - Fit & use parameters to model background shape, empirical shape
 - Extrapolate to "region of interest" (e.g. M_T>600 GeV)
- Estimate # of bgd evens in signal region (w/o relying on MC)

Data-driven background estimate NB: width of W' for higher masses

Cosmic rays (µ only)

- cosmic ray muons produce large met, large m_T, across detector impinging from above
 uniform distribution in d₀.
- Large m_T by construction
- suppress this contribution by requiring the muons to originate from the beam pipe
 - $\bullet |d_0|{<}0.02$ cm, tighter than usual cuts (0.2 cm for W,Z σ)
- Estimate residual number of cosmic ray muons left over by looking in Control Region
 0.02 < |d₀| < 2 cm
- Extrapolate into signal region with appropriate m_T shape

Results

6

M8+2101

Data: electrons

data: μ distributions

Transverse mass distribution results (ele)

- Good agreement in both background prediction observed in the $M_{\rm T}$ distribution (left) and the cumulative distribution (right)

Highest transverse mass event: $M_T = 493$ GeV

Highest transverse mass muon event, $M_T = 487$ GeV

Highest transverse mass muon event, $M_T = 487$ GeV

Systematic uncertainty example (e)

- Values indicate the percent variation on the number of events with $M_{\rm T} > 500~GeV$

Source of systematic error	Uncertainty	Signal	Total Bkg
Integrated luminosity	11%	11%	0.84%
Electron reco efficiency	1.9%	1.9%	0.14%
Electron ID efficiency	1.5%	1.5%	0.11%
Electron energy scale	1%(EB), 3%(EE)	0.4%	9.9%
$E_{\rm T}^{\rm miss}$ scale	5%	1.6%	1.4%
$E_{\rm T}^{\rm miss}$ resolution	10%	0.9%	0.5%
Cross section		10%	1.1%
Total (lumi not included)		10.5%	10.1%

Data (electron channel example)

- Good agreement between data and background prediction in both channels
- As we do not see an excess in data, we can set a lower-bound on the mass of the W' boson for our model

Sample	> 45	> 200	> 300	> 400	> 500	> 600
$W \rightarrow e \nu$	75609 ± 319	33.7 ± 2.7	7.19 ± 0.91	$2.52\!\pm 0.48$	$0.88 {\pm} 0.28$	0.57 ± 0.21
Multi-jet	7083 ± 3546	6.3 ± 3.3	$1.64 {\pm} 0.93$	0.47 ± 0.33	0.23 ± 0.20	0.23 ± 0.20
$W \rightarrow \tau \nu$	1083 ± 80	1.1 ± 0.3	0.21 ± 0.19	< 0.13	< 0.08	< 0.08
tī	$60\pm$ 23	4.1 ± 1.7	0.64 ± 0.29	$0.15 {\pm} 0.09$	0.03 ± 0.03	0.01 ± 0.02
Other bkg	$359\pm$ 73	2.0 ± 0.4	$0.56 {\pm} 0.14$	0.15 ± 0.05	0.06 ± 0.03	0.04 ± 0.03
Total bkg	84194 ± 3563	47.2 ± 4.7	10.24 ± 1.35	3.29 ± 0.61	$1.21\!\pm 0.35$	0.85 ± 0.30
Data	84468	38	8	2	0	0

* Other MC bkgs: γ +jets, W $\rightarrow \mu \nu$, Z/ $\gamma^* \rightarrow \ell$, WW, WZ, ZZ, single top, Z+ $\gamma \rightarrow \nu \nu + \gamma$ ** Table includes both statistical and systematic uncertainties added in quadrature (does not include luminosity uncertainty)

W' theory cross section σ_e | expected cross section limit observed cross section limit σ_{0}

	-						
$M_{W'}$	min M _T	ns	nb	$n_{\rm d}$	σ_t	σ_e	σ_{o}
(TeV/c^2)	(TeV/c^2)				(pb)	(pb)	(pb)
0.6	0.400	129.38 ± 20.16	3.29 ± 0.61	2	8.290	0.379	0.289
0.7	0.500	60.77 ± 9.61	1.21 ± 0.35	0	4.264	0.314	0.215
0.8	0.500	39.54 ± 6.08	1.21 ± 0.35	0	2.426	0.274	0.188
0.9	0.500	25.24 ± 3.85	1.21 ± 0.35	0	1.389	0.246	0.168
1.0	0.500	16.10 ± 2.45	1.21 ± 0.35	0	0.838	0.232	0.159
1.1	0.500	10.06 ± 1.53	1.21 ± 0.35	0	0.516	0.229	0.157
1.2	0.650	6.02 ± 0.92	0.60 ± 0.24	0	0.334	0.215	0.170
1.3	0.675	3.92 ± 0.60	0.51 ± 0.21	0	0.215	0.207	0.168
1.4	0.675	2.52 ± 0.38	0.51 ± 0.21	0	0.136	0.203	0.164
1.5	0.675	1.89 ± 0.29	0.51 ± 0.21	0	0.099	0.196	0.159
2.0	0.675	0.27 ± 0.04	0.51 ± 0.21	0	0.014	0.206	0.167

 σ_t

Electrons

Muons

m _{W'}	M _T	N _{sig}	N _{bkg}	N _{data}	$\sigma \cdot BR$	Expected	Observed
(GeV)	(GeV)	(Events)	(Events)	(Events)	(pb)	limit (pb)	limit (pb)
600	390	152 ± 16	2.54 ± 0.68	1	8.290	0.308	0.212
700	450	78 ± 8	1.54 ± 0.41	1	4.264	0.267	0.227
800	470	49 ± 5	1.33 ± 0.35	1	2.426	0.236	0.212
900	500	29 ± 3	1.09 ± 0.29	0	1.389	0.216	0.150
1000	530	18 ± 1.9	0.91 ± 0.23	0	0.849	0.204	0.147
1100	590	11 ± 1.2	0.65 ± 0.16	0	0.516	0.193	0.151
1200	610	7.1 ± 0.7	0.59 ± 0.15	0	0.334	0.188	0.150
1300	630	4.7 ± 0.5	0.54 ± 0.13	0	0.214	0.180	0.146
1400	630	3.0 ± 0.3	0.54 ± 0.13	0	0.141	0.175	0.139
1500	680	2.1 ± 0.2	0.42 ± 0.10	0	0.094	0.175	0.146
2000	690	$0.29 {\pm}~0.03$	0.40 ± 0.10	0	0.014	0.185	0.153

W' theory cross section σ_e expected cross section limit observed cross section limit σ_{0}

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$M_{W'}$	min M _T	ns	nb	$n_{\rm d}$	σ_t	σ_e	σ_{o}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(TeV/c^2)	(TeV/c^2)				(pb)	(pb)	(pb)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6	0.400	129.38 ± 20.16	3.29 ± 0.61	2	8.290	0.379	0.289
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7	0.500	60.77 ± 9.61	1.21 ± 0.35	0	4.264	0.314	0.215
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8	0.500	39.54 ± 6.08	1.21 ± 0.35	0	2.426	0.274	0.188
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9	0.500	25.24 ± 3.85	1.21 ± 0.35	0	1.389	0.246	0.168
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0	0.500	16.10 ± 2.45	1.21 ± 0.35	0	0.838	0.232	0.159
$ \begin{array}{ccccccccccccccccccccccccc$	1.1	0.500	10.06 ± 1.53	1.21 ± 0.35	0	0.516	0.229	0.157
$ \begin{array}{ccccccccccccccccccccccccc$	1.2	0.650	6.02 ± 0.92	0.60 ± 0.24	0	0.334	0.215	0.170
$ \begin{array}{ccccccccccccccccccccccccc$	1.3	0.675	3.92 ± 0.60	0.51 ± 0.21	0	0.215	0.207	0.168
$ \begin{array}{ccccccccccccccccccccccccc$	1.4	0.675	2.52 ± 0.38	0.51 ± 0.21	0	0.136	0.203	0.164
$2.0 \qquad 0.675 \qquad 0.27 \pm 0.04 \qquad 0.51 \pm 0.21 \qquad 0 \qquad 0.014 \qquad 0.206 \qquad 0.167$	1.5	0.675	1.89 ± 0.29	0.51 ± 0.21	0	0.099	0.196	0.159
	2.0	0.675	0.27 ± 0.04	0.51 ± 0.21	0	0.014	0.206	0.167

 σ_t

Electrons

Muons

m _{W'}	M _T	N_{sig}	N _{bkg}	N _{data}	$\sigma \cdot BR$	Expected	Observed
(GeV)	(GeV)	(Events)	(Events)	(Events)	(pb)	limit (pb)	limit (pb)
600	390	152 ± 16	2.54 ± 0.68	1	8.290	0.308	0.212
700	450	78 ± 8	1.54 ± 0.41	1	4.264	0.267	0.227
800	470	49 ± 5	1.33 ± 0.35	1	2.426	0.236	0.212
900	500	29 ± 3	1.09 ± 0.29	0	1.389	0.216	0.150
1000	530	18 ± 1.9	0.91 ± 0.23	0	0.849	0.204	0.147
1100	590	11 ± 1.2	0.65 ± 0.16	0	0.516	0.193	0.151
1200	610	7.1 ± 0.7	0.59 ± 0.15	0	0.334	0.188	0.150
1300	630	4.7 ± 0.5	0.54 ± 0.13	0	0.214	0.180	0.146
1400	630	3.0 ± 0.3	0.54 ± 0.13	0	0.141	0.175	0.139
1500	680	2.1 ± 0.2	0.42 ± 0.10	0	0.094	0.175	0.146
2000	690	$0.29 {\pm}~0.03$	0.40 ± 0.10	0	0.014	0.185	0.153

 σ_t W' theory cross section σ_e expected cross section limit σ_o observed cross section limit

$M_{W'}$	min $M_{\rm T}$	ns	nb	$n_{\rm d}$	σ_t	σ_e	σ_{o}
(TeV/c^2)	(TeV/c^2)				(pb)	(pb)	(pb)
0.6	0.400	129.38 ± 20.16	3.29 ± 0.61	2	8.290	0.379	0.289
0.7	0.500	60.77 ± 9.61	1.21 ± 0.35	0	4.264	0.314	0.215
0.8	0.500	39.54 ± 6.08	1.21 ± 0.35	0	2.426	0.274	0.188
0.9	0.500	25.24 ± 3.85	1.21 ± 0.35	0	1.389	0.246	0.168
1.0	0.500	16.10 ± 2.45	1.21 ± 0.35	0	0.838	0.232	0.159
1.1	0.500	10.06 ± 1.53	1.21 ± 0.35	0	0.516	0.229	0.157
1.2	0.650	6.02 ± 0.92	0.60 ± 0.24	0	0.334	0.215	0.170
1.3	0.675	3.92 ± 0.60	0.51 ± 0.21	0	0.215	0.207	0.168
1.4	0.675	2.52 ± 0.38	0.51 ± 0.21	0	0.136	0.203	0.164
1.5	0.675	1.89 ± 0.29	0.51 ± 0.21	0	0.099	0.196	0.159
2.0	0.675	0.27 ± 0.04	0.51 ± 0.21	0	0.014	0.206	0.167

Electrons

<u>Muons</u>

m _{W'}	M _T	N _{sig}	N _{bkg}	N _{data}	$\sigma \cdot BR$	Expected	Observed
(GeV)	(GeV)	(Events)	(Events)	(Events)	(pb)	limit (pb)	limit (pb)
600	390	152 ± 16	2.54 ± 0.68	1	8.290	0.308	0.212
700	450	78 ± 8	1.54 ± 0.41	1	4.264	0.267	0.227
800	470	49 ± 5	1.33 ± 0.35	1	2.426	0.236	0.212
900	500	29 ± 3	1.09 ± 0.29	0	1.389	0.216	0.150
1000	530	18 ± 1.9	0.91 ± 0.23	0	0.849	0.204	0.147
1100	590	11 ± 1.2	0.65 ± 0.16	0	0.516	0.193	0.151
1200	610	7.1 ± 0.7	0.59 ± 0.15	0	0.334	0.188	0.150
1300	630	4.7 ± 0.5	0.54 ± 0.13	0	0.214	0.180	0.146
1400	630	3.0 ± 0.3	0.54 ± 0.13	0	0.141	0.175	0.139
1500	680	2.1 ± 0.2	0.42 ± 0.10	0	0.094	0.175	0.146
2000	690	$0.29 {\pm}~0.03$	0.40 ± 0.10	0	0.014	0.185	0.153

W' theory cross section σ_e | expected cross section limit observed cross section limit σ_{o}

	_						
$M_{W'}$	$\min M_{\mathrm{T}}$	ns	nb	n _d	σ_t	σ_e	σ_o
(TeV/c^2)	(TeV/c^2)				(pb)	(pb)	(pb)
0.6	0.400	129.38 ± 20.16	3.29 ± 0.61	2	8.290	0.379	0.289
0.7	0.500	60.77 ± 9.61	1.21 ± 0.35	0	4.264	0.314	0.215
0.8	0.500	39.54 ± 6.08	1.21 ± 0.35	0	2.426	0.274	0.188
0.9	0.500	25.24 ± 3.85	1.21 ± 0.35	0	1.389	0.246	0.168
1.0	0.500	16.10 ± 2.45	1.21 ± 0.35	0	0.838	0.232	0.159
1.1	0.500	10.06 ± 1.53	1.21 ± 0.35	0	0.516	0.229	0.157
1.2	0.650	6.02 ± 0.92	0.60 ± 0.24	0	0.334	0.215	0.170
1.3	0.675	3.92 ± 0.60	0.51 ± 0.21	0	0.215	0.207	0.168
1.4	0.675	2.52 ± 0.38	0.51 ± 0.21	0	0.136	0.203	0.164
1.5	0.675	1.89 ± 0.29	0.51 ± 0.21	0	0.099	0.196	0.159
2.0	0.675	0.27 ± 0.04	0.51 ± 0.21	0	0.014	0.206	0.167

 σ_t

Electrons

Muons

m _{W'}	M _T	N _{sig}	N _{bkg}	N _{data}	$\sigma \cdot BR$	Expected	Observed
(GeV)	(GeV)	(Events)	(Events)	(Events)	(pb)	limit (pb)	limit (pb)
600	390	152 ± 16	2.54 ± 0.68	1	8.290	0.308	0.212
700	450	78 ± 8	1.54 ± 0.41	1	4.264	0.267	0.227
800	470	49 ± 5	1.33 ± 0.35	1	2.426	0.236	0.212
900	500	29 ± 3	1.09 ± 0.29	0	1.389	0.216	0.150
1000	530	18 ± 1.9	0.91 ± 0.23	0	0.849	0.204	0.147
1100	590	11 ± 1.2	0.65 ± 0.16	0	0.516	0.193	0.151
1200	610	7.1 ± 0.7	0.59 ± 0.15	0	0.334	0.188	0.150
1300	630	4.7 ± 0.5	0.54 ± 0.13	0	0.214	0.180	0.146
1400	630	3.0 ± 0.3	0.54 ± 0.13	0	0.141	0.175	0.139
1500	680	2.1 ± 0.2	0.42 ± 0.10	0	0.094	0.175	0.146
2000	690	$0.29 {\pm}~0.03$	0.40 ± 0.10	0	0.014	0.185	0.153

W' theory cross section σ_e expected cross section limit observed cross section limit

		,					
$M_{W'}$	$\min M_{\mathrm{T}}$	ns	nb	$n_{\rm d}$	σ_t	σ_e	σ_{o}
(TeV/c^2)	(TeV/c^2)				(pb)	(pb)	(pb)
0.6	0.400	129.38 ± 20.16	3.29 ± 0.61	2	8.290	0.379	0.289
0.7	0.500	60.77 ± 9.61	1.21 ± 0.35	0	4.264	0.314	0.215
0.8	0.500	39.54 ± 6.08	1.21 ± 0.35	0	2.426	0.274	0.188
0.9	0.500	25.24 ± 3.85	1.21 ± 0.35	0	1.389	0.246	0.168
1.0	0.500	16.10 ± 2.45	1.21 ± 0.35	0	0.838	0.232	0.159
1.1	0.500	10.06 ± 1.53	1.21 ± 0.35	0	0.516	0.229	0.157
1.2	0.650	6.02 ± 0.92	0.60 ± 0.24	0	0.334	0.215	0.170
1.3	0.675	3.92 ± 0.60	0.51 ± 0.21	0	0.215	0.207	0.168
1.4	0.675	2.52 ± 0.38	0.51 ± 0.21	0	0.136	0.203	0.164
1.5	0.675	1.89 ± 0.29	0.51 ± 0.21	0	0.099	0.196	0.159
2.0	0.675	0.27 ± 0.04	0.51 ± 0.21	0	0.014	0.206	0.167

 σ_t

 σ_{\circ}

Electrons

Muons

m _{W'}	M _T	N _{sig}	N _{bkg}	N _{data}	$\sigma \cdot BR$	Expected	Observed
(GeV)	(GeV)	(Events)	(Events)	(Events)	(pb)	limit (pb)	limit (pb)
600	390	152 ± 16	2.54 ± 0.68	1	8.290	0.308	0.212
700	450	78 ± 8	1.54 ± 0.41	1	4.264	0.267	0.227
800	470	49 ± 5	1.33 ± 0.35	1	2.426	0.236	0.212
900	500	29 ± 3	1.09 ± 0.29	0	1.389	0.216	0.150
1000	530	18 ± 1.9	0.91 ± 0.23	0	0.849	0.204	0.147
1100	590	11 ± 1.2	0.65 ± 0.16	0	0.516	0.193	0.151
1200	610	7.1 ± 0.7	0.59 ± 0.15	0	0.334	0.188	0.150
1300	630	4.7 ± 0.5	0.54 ± 0.13	0	0.214	0.180	0.146
1400	630	3.0 ± 0.3	0.54 ± 0.13	0	0.141	0.175	0.139
1500	680	2.1 ± 0.2	0.42 ± 0.10	0	0.094	0.175	0.146
2000	690	$0.29 {\pm}~0.03$	0.40 ± 0.10	0	0.014	0.185	0.153

Combined limit for electron and muon channels

Combined limit for electron and muon channels

• W' \rightarrow $\ell \vee (\ell = e, \mu, \tau)$ •W' \rightarrow tb

- $\bullet W' \rightarrow WZ$
- $W' \rightarrow \ell N_R \rightarrow \ell \ell j j$
- New challenges in this run
 - Multiple interactions per crossing
 - High-luminosity triggering
 - High-p⊤ object reconstruction
- But a lot of possibilities with large data samples (1/fb ++)

Summary

- The LHC era has begun!
 - CMS detector is performing exceptionally
- Already exploring new territory, even with tiny data sets
- We performed a search for W'→ℓv with 36.1 pb⁻¹ of 2010 data
- Combining electron and muon channels: $M_{W'} > 1.58$ TeV
 - Most stringent direct search limit in the world
- with more than 30 times as much data in near future, great chance for something exciting at LHC in 2011/2012 run
 - Keep paying attention!

Higgs Discovery at CMS?

Peter Higgs visiting CMS...

1102

ME-1101

Backup Slides

Exclude W' with masses below 1.36 TeV at 95% CL

Exclude W' with masses below 1.36 TeV at 95% CL

Muon Limit alone

- Got a bit lucky (expected limit around 1.35 TeV, observed is 1.40 TeV)
- No events seen in high MT region

ATLAS limit

- Biggest difference between CMS and ATLAS is lepton acceptance
 - \blacktriangleright ATLAS: electrons with $|\eta_{\rm e}| < 2.4,$ muons with $|\eta_{\mu}| < 1.05$
 - CMS: electrons with $|\eta_e| < 2.5$, muons with $|\eta_{\mu}| < 2.10$

Indirect Limits on $W'_{L} \rightarrow \ell \nu$

- Simple model for W':
 SU(2)₁ x SU(2)₂ x U(1)_Y.
- Limits presented have g₁ = g₂ (sequential W')
- Green: Precision EWK preferred
- Claim: LHC not competitive beyond Tevatron until 10/fb (green region)

Schmaltz, M., & Spethmann, C. *Two Simple W' Models for the Early LHC.* arXiv:1011.5918v2

Systematic uncertainty

- Values indicate the percent variation on the number of events with $M_{\rm T}>200~GeV$
 - Electron reco efficiency uncertainty from EWK group
 - CMS AN-10-264, EWK-10-002
 - HEEP efficiency uncertainty from HPTE group
 - CMS AN-10-318

Source of systematic error	Uncertainty	Signal	MC Bkg	$W \rightarrow e \nu$	Multi-jet
Integrated luminosity	11%	11%	11%	-	-
Electron reco efficiency	1.9%	1.9%	1.9%	-	-
Electron ID efficiency	1.5%	1.5%	1.5%	-	-
Electron energy scale	1%(EB), 3%(EE)	0.0%	0.7%	20%	50%
$E_{\rm T}^{\rm miss}$ scale	5%	2.0%	5.7%		conser-
$E_{\rm T}^{\rm miss}$ resolution	10%	0.3%	2.2%	11%	vative
Cross section		10%	29%	-	-
Total (lumi not included)		10.5%	29.7%	22%	50%

Bayesian upper limit calculator

• We use a Bayesian tool to calculate the expected and observed 95% CL upper limits

$$p(\sigma|n,\epsilon,\mathcal{L},b) = \frac{p(n|\sigma,\epsilon,\mathcal{L},b)\pi(\sigma)}{\int p(n|\sigma,\epsilon,\mathcal{L},b)\pi(\sigma)d\sigma}$$

$$p(n|\sigma,\epsilon,\mathcal{L},b) = \int \int \int P(n|\sigma,\epsilon',\mathcal{L}',b')g(\epsilon')h(\mathcal{L}')f(b')d\epsilon'd\mathcal{L}'db'$$

Poisson

$$P(n|\sigma,\epsilon,\mathcal{L},b) = \frac{(b+\mathcal{L}\epsilon\sigma)^n}{n!}e^{-(b+\mathcal{L}\epsilon\sigma)}$$

Log-normal distributions to describe uncertainties

$$\int_0^{\sigma^{95}(n)} p(\sigma|n,\epsilon,\mathcal{L},b) d\sigma = 0.95$$

Expected limit $< \sigma^{95} > = \sum_{k=0}^{\infty} \sigma^{95}(k) \cdot P(k|\sigma = 0, \epsilon, \mathcal{L}, b)$

- n = Number of observed events
- b = Expected number of background
- \mathcal{C} = Integrated luminosity

$$\epsilon = \text{Acceptance} \times \text{efficiency}$$

Trigger efficiency

CMS-AN-318-v6

Figure 1: The trigger efficiencies for single L1 seeded photon trigger (top left), the L1 unseeded second leg of the double photon trigger (top right), single electron without EleId trigger (bottom left) and single electron with EleId (bottom right) trigger vs E_T . Electrons are required to pass the HEEP selection and invariant mass in the range 70-110 GeV/c² with second HEEP electron passing the HLT_Ele32_SW_TightEleId_v2 trigger. The E_T is the offline electron E_T and the online threshold is 22 GeV. This is done for the run-range 146426-147119 (4.4 pb⁻¹)

High energy electrons

CMS-AN-318-v6

		$1.56 < \eta < 1.80$	$1.80 < \eta < 2.20$	$2.20 < \eta < 2.50$
Data	nb. el.	493	2011	1520
	Δ	0.01 ± 0.02	-0.02 ± 0.01	0.01 ± 0.01
Drell-Yan MC	nb. el.	620	1981	1422
	Δ	0.01 ± 0.00	0.03 ± 0.00	0.01 ± 0.00

Table 8: For three $|\eta|$ bins in the ECAL endcap, number of electrons with $p_t > 25 \text{ GeV}/c$ and E > 100 GeV with mass $M_{ee} > 40 \text{ GeV}/c^2$, selected using the HEEP criteria, and value of the Δ variable, both for data (luminosity of 35 pb⁻¹), and for Drell-Yan Monte Carlo simulation.

Figure 20: Distribution of the fractional difference between the measured energy (E_1^{meas}) and the energy reconstructed with the method described in this section (E_1^{rec}), for E > 100 GeV in the ECAL endcap.

Electrons not selected (Sideband Examination)

Using our background estimation technique, the plots shows MT for events that fail ET/MET cut and sit <u>outside</u> the range 0.4 < ET/MET < 1.5

As expected, this region is QCD dominated

Although agreement isn't perfect, shape and the normalization are reasonable

ARC question:

1) Sideband examination. Do your background estimation techniques adequately predict any of the following:

b) Events failing either the delta phi or <u>ET/MET</u> cuts.

CMS EWK and top measurements at a glance

CMS EWK and top measurements at a glance

CMS Muon System

Momentum resolution up to ~100 GeV limited by multiple scattering in the iron, $\Delta p/p \sim 10\%@100$ GeV (µ system only)

Combination with high resolution silicon tracker \rightarrow few %

For p_{μ} ~O(TeV), muon system resolution is dominating $\rightarrow \Delta p/p$ ~10%

CMS Electromagnetic Calorimeter

Fully active ECAL, made of PbWO₄ crystals (CMS development)

Arranged in 36 barrel supermodules (61200 crystals, 67.4t) and 4 end-cap D's (14648 crystals, 22.9t)

Operating at B=3.8T

Temperature stabilized to mK for light output

Laser system for calibration (crystals darken from radiation)

PbWO₄-cr

CMS Tracker (Strips & Pixels)

Peter Wittich

Standard Model Higgs Boson Searches

- Estimated reach with 1/fb of data at √s=7 TeV
- Obtained by scaling 14 TeV studies to current COM energy
- Strong limits in range where H \rightarrow WW dominates
 - Can exclude SM Higgs in this range
- No sensitivity outside this range for 1/fb
 - Does not appreciably improve if you do naive CMS+ATLAS combo

CMS Jets and Missing ET

Most all of the Jet and Missing ET reconstruction here uses **Particle Flow** (PF) technique:

All tracks/energy deposits sorted into charged/neutral hadron, electron, photon, or muon candidates

Resulting set of corrected particles input to jet clustering, MET determination, HT, MT, etc.

Significant improvement over traditional "CaloJets" for ~low-medium ET jets with tracker coverage

Anti-kT clustering with R=0.5 used everywhere here

JES of PF jets known to 3-4% PF MET FWHM in dijets ~10 GeV

