

CMS 2010 Multilepton Results

Richard Gray Rutgers University

University of Pennsylvania

April 19, 2011 R. Gray, Rutgers University

Outline for today

+ Introduction

+ SUSY Searches with Leptons and Jets

- + Multi-Leptons (≥3 Leptons)
- + Conclusions.

The Search for New Physics

Problems with the standard model indicate that there should be new particles at the ~TeV scale. At minimum, this includes the Higgs and a Dark Matter candidate. One possibility is Super Symmetry.

What is Supersymmetry?

+ Supersymmetry (SUSY) postulates the following:

- + For every standard particle there is a "super partner"
- + Super Partners differ by spin (1/2 difference) and mass

The LHC

- Circular tunnel 27 km in circumference.
- The tunnel is buried ~100m underground
- Proton (Ion) beams move around the LHC ring inside a continuous vacuum guided by superconducting magnets.
- The beams will be stored at high energy for hours. During this time collisions take place inside the four main LHC experiments:
 - CMS
 - ATLAS
 - LHCb → b physics (CP violation, rare decays)
- ALICE → Heavy Ion experiment (quark-gluon plasma)

Overall view of the LHC experiments.

CMS is the focus of this talk

Section of the CMS Detector

CMS Cross Section

39 countries
169 Institutions
3170 scientists & engineers
~800 graduate students

On March 30, 2010, LHC collided 7 TeV beams for the first time.

It took the hard work of a large number of people to make the LHC and its detectors a reality.

Particle Reconstruction: with photons and tracks

After cosmic runs, used \sqrt{s} = 900 GeV and \sqrt{s} = 2.3 TeV running to test the detector.

 $\eta \rightarrow \gamma \gamma$

April 19, 2011

9

R. Gray, Rutgers University

Jets

Quarks cannot roam far from other quarks (confinement). Strong force potential increases with distance. Highly energetic quarks initiate a shower of baryons and mesons with ~ the same energy and momentum as the original quark.

Missing Transverse Energy (MET)

MET: momentum imbalance in the detector caused by neutral, weakly interacting particles (e.g. neutrinos ... or SUSY neutralinos, "dark matter" candidates)

g

Before Looking for SUSY, Look for W[±] and Z^o

Plots from ICHEP-2010 with first 0.2 pb⁻¹ of 7 TeV data

Searching for SUSY in 7 TeV 2010 Data

- + In 2010 CMS collected an integrated luminosity of 35 pb⁻¹ of data
 - + Must search for signatures of SUSY that are rare in the SM
 - + Problem: SUSY looks different depending on the mass spectrum.
- + Some Examples of recent CMS analyses:

Searching for SUSY in 7 TeV 2010 Data

- + Today, I will cover the following:
 - + Emphasis on the \geq 3 Lepton channel.
 - + Briefly mention Jets+MET analysis to compare exclusions.

Searching for SUSY with Multi-Leptons

- Leptons that don't originate from jets are rare.
- + SM events with ≥3 leptons are very rare!
 - + Leptons isolated from jets come from gauge bosons γ^{*}, Z^o, W[±]
- Many SUSY scenarios do produce large numbers of leptons.
 - + Can also have large MET and large H_T

The SUSY Decays

- + Leptons produced at the end of a chain of susy decays.
- + Strongly coupled squarks and gluinos are generated in the proton collisions.
- + Some combination of charginos, neutralinos, and sleptons decay to leptons and LSP (dark matter)

Distinguish Between Leptons from Jets and Leptons from SUSY

- + We need to remove leptons from jets.
 - + Leptons should be isolated from Jets.
 - + Sum transverse energy in cone around lepton from tracks, HCal, and ECal.
 - + Require energy in cone to be small compared to the lepton.
- + Leptons must be from the collision.
 - + Leptons should be "prompt"
 - + Leptons from jets can start farther from interaction vertex
 - Require lepton to have small "impact parameter"

Isolation and Impact Parameter

Prompt and isolated leptons are defined by: Reliso<0.15 and d_{xv}<0.02 cm

18

R. Gray, Rutgers University

Electron Selection

+ Electrons:

+ ID selection ~90% efficient (WP90 or VBTF90).

- + Cut on shower shape variables and track+shower match.
- + ~90%-95% efficient for $p_t > 20 \text{ GeV}$
- + Use Relative Isolation < 15%
 - + Relative Isolation (rellso): ΣE_T in isolation region divided by lepton p_t
 - + Efficiency varies with hadronic activity (N jets)
 - For electron p_t=20 GeV, Isolation Efficiency is ~75% if 2 jets (E_t > 30 GeV)
- + Electron P_t > 8 GeV

Muon Selection

+ Muons:

+ ID selection >95% efficient.

- + Require track to match calorimeter and muon system hits
- + Calorimeter deposits must be consistent with minimum ionizing
- + A good global fit to hits in track and muon system.

+ Use Relative Isolation < 15%

- + Relative Isolation (rellso): ΣE_T in isolation region divided by lepton p_t
- + Efficiency varies with hadronic activity (N jets)
- + For muon $p_t=20$ GeV, Isolation Efficiency is ~80% if 2 jets ($E_t > 30$ GeV)
- + Muon $P_t > 8 \text{ GeV}$

+ Tau leptons are unstable and decay near the collision.

τ [.] Decay	Branching Fraction	Detector Signature
$\mu^{-}\nu_{\mu}\nu_{\tau}$	17%	Isolated µ
e ⁻ ν _e ν _τ	18%	Isolated e
(π- or K-) ν _τ	12%	Isolated Track
(π- or K-) ν _τ + ≥1 π°	37%	Tracker and Hcal iso Track
3 prong	15%	Skinny Jet with 3 tracks

+ 35% of Tau decays are to e or μ + neutrinos

τ ⁻ Decay	Branching Fraction	Detector Signature
μ ⁻ ν _μ ν _τ	17%	Isolated µ
e ⁻ ν _e ν _τ	18%	Isolated e
(π- or K-) ν _τ	12%	Isolated Track
(π- or K-) ν _τ + ≥1 π [°]	37%	Tracker and Hcal iso Track
3 prong	15%	Skinny Jet with 3 tracks

+ 12% of Tau decays are to single track + neutrinos

τ ⁻ Decay	Branching Fraction	Detector Signature
$\mu^{-}\nu_{\mu}\nu_{\tau}$	17%	lsolated μ
e ⁻ ν _e ν _τ	18%	Isolated e
(π- or K-) ν _τ	12%	Isolated Track
(π- or K-) ν _τ + ≥1 π°	37%	Tracker and Hcal iso Track
3 prong	15%	Skinny Jet with 3 tracks

+ 52% of Tau decays to 1 or 3 track "skinny jets" with Ecal deposits.

τ ⁻ Decay	Branching Fraction	Detector Signature
$\mu^{-}\nu_{\mu}\nu_{\tau}$	17%	Isolated μ
e ⁻ ν _e ν _τ	18%	Isolated e
(π- or K-) ν _τ	12%	Isolated Track
(π- or K-) ν _τ + ≥1 π°	37%	Tracker and Hcal iso Track
3 prong	15%	Skinny Jet with 3 tracks

Hadronic Tau Selection (Divided into two Categories)

Isolated Track

- + Sensitive to $\tau^{\pm} \rightarrow \pi^{\pm} \upsilon \upsilon$ and poorly reconstructed e's and μ 's
- + Relative Isolation < 15%
- Simple object that can be used at first data with small systematic uncertainties.
- Higher efficiency, and lower background than more complicated tau candidates.

"Particle Flow" (PF) Tau

- + Sensitive to $\tau^{\pm} \rightarrow \pi^{\pm} \ge 1\pi^{\circ}$ and $\tau \rightarrow 3\pi^{\pm}$ with 4× branching fraction of isolated track.... but smaller efficiency.
- Look for signal tracks (1 or 3) and showers in narrow "signal" cone.
 - + Tracks have $p_t > 5 \text{ GeV}$
 - + Signal cone shrinks: ΔR 0.1 or 5 GeV / p_T
- Require low energy in a larger
 "isolation" cone. (ΔR=0.5 to signal)
- More complicated object with large (~30%) systematic uncertainty.

Exclusive Channels

- + Each event must be in one and only one final state.
 - + Object priority given in order: μ , e, τ (track), τ (PF), Jet
 - + Final State Priority given to channel with the most leptons

Background reduction variables

Even after requiring 3 or more leptons, there are still some SM backgrounds. These can be removed by cutting on missing transverse energy or H_T .

Background reduction variables

Beware, models vary. Not all of them have large H_T .

April 19, 2011

28

Importance of ≥3 Leptons

- + Is a ≥2 lepton analysis a superset of a ≥3 lepton analysis?
 + In other words, wouldn't ≥2 leptons catch all of the ≥3 leptons?
- 2 lepton analysis needs tight MET or H_T (or both) to control background.
 - + New physics with ≥ 3 leptons, but marginal MET or H_T, would be missed by a ≥2 lepton analysis.
- + Analysis of \ge 3 lepton important because 3rd of 4th leptons reduces or eliminate the need to cut on MET or H_T.
- In multilepton analysis we bin in MET and H_T quantities rather than cut on them.
 - + Maximizes range of SUSY sensitive to the analysis.
 - + Don't miss a discovery because of choice of background reduction.

Event selection

- + Include 3 and \geq 4 lepton combinations with \leq 2 τ 's
 - + Use single e and single μ Triggers
 - + Veto events where $M(I+I-) < 12 \text{ GeV} (J/\psi, Upsilon)$
 - + Require $\ge 1 \mu$ with pt > 15 GeV or $\ge 1 e$ with pt > 20 GeV
- + Divide remaining events into 5 bins defined by background reducing variables.
 - ≻ H_T>200 GeV
 - MET>50 GeV
 - > 75 GeV <M(l⁺l⁻)<105 GeV</p>
- PF Tau backgrounds are large enough that we only consider them if both MET and HT are large.

Background Predictions

- + Some are directly from Monte Carlo (MC)
 - + Irreducible backgrounds: WZ+Jets, ZZ+Jets
 - + Corrected to match efficiency measurements.
 - + Small cross sections.

+ Some are from MC with Data Controls or Scale Factors

- + Including TTbar and FSR from dileptons
 - + Correct MC to match efficiency measurements
- + The rest are completely "Data Driven"
 - + Z+Jets, WW+Jets, W+Jets, QCD
 - + No MC required.
 - + Use variation on fake rate method (CFO)

TTbar Background

+ Obtained from Monte Carlo but validated in control data.

- + Compare to relevant distributions in <u>data dominated by TTbar.</u>
- + Compare non-isolated tracks in e⁺μ⁻ events
 - + Look at large and small impact parameter
 - + Related to # of fake leptons, # of b-jets
 e⁺μ⁻: p_t of Tracks with |d_{xv}(BS)| < 0.02 cm</p>
 e⁺μ⁻: p_t of Tracks with |d_{xv}(BS)| > 0.02 cm

Data Driven Background Predictions

- + We want to avoid trusting our MC for our background predictions.
- + We use a variation on the CDF (Tevatron) Fake Rate Method
 - + Used in CDF 2 fb⁻¹ 3-lepton analysis--(Dube, Somalwar)
 - + Fake Rate Method may have different names in literature:
 - + "Fake Rate" method: CDF Tevatron and CMS Multi-Leptons
 - + "Tight-Loose" method: CMS SS Leptons, recent ATLAS papers.
- + Goal: Predict backgrounds with fake leptons just using data
 - + Fakes include: real e/ μ from jets or K/ π / γ passing selection.

Data Driven Predictions

+ Use 2L data as a seed to predict ≥3L background
 + Example: 2e(SS) to predict 2e(SS)µ background

- + Fake e or μ "fake rate" method with isolated tracks
- + Fake iso-track uses loose isolation tracks.

Fake Rate Basics

+ Basic Idea:

- + Select an object to act as a proxy for fake leptons
 - + Pick something related to the fakes
 - + But should occur more frequently than fakes.
- + Determine a conversion factor (f_{μ}) from control data (di-jet).

+ $f_{\mu} = N_{FAKE}/N_{PROXY}$

- + Substitute fake proxy as a lepton in your analysis.
- + Scale events by f_{μ} to get background prediction.

Choosing a Fake Proxy

- + Systematics arise from assumption that fake rate is constant.
- + Choice of fake proxy affects the type and size of systematic
 - + Examples:
 - + Loose isolation requirement: Sensitive to jet spectra
 - + Loose Lepton ID: Sensitive to types of jets (b, c, uds, glue).
- + Systematic uncertainties increase the looser the proxy
- + Multilepton analysis uses isolated tracks for e/µ predictions.
 - + Lots of statistics---needed for the low stats in multi-lepton.
 - + Fake rate insensitive to jet spectra.
 - + BUT! Fake rate sensitive to jet types (b, c, uds, glue)

Controlling Fake Rate Systematics (Addition to CDF Fake Rate Method)

- + Write track \rightarrow lepton fake rate (f_L), in terms of:
 - + Non-isolated leptons (N_L)
 - + Non-isolated tracks (N_T)
 - + Ratio isolation efficiencies. ($\epsilon^{\mu}_{Iso}/\epsilon^{T}_{Iso}$)

Parameterize Efficiency Ratio $f_{\mu} = \frac{N_{\mu}^{Iso}}{N_{T}^{Iso}} = \frac{N_{\mu}}{N_{T}} \times \frac{\epsilon_{Iso}^{\mu}}{\epsilon_{Iso}^{T}}$

Correlated with fraction of heavy flavor in jets.
 B, or D mesons in b and c jets (also glue)

> Heavy flavor have large impact parameter $|d_{xy}|$

Define Ratio R_{dxy}

- #tracks with large |d_{xy}| (0.02cm 0.2 cm) divided by # with small |d_{xy}| (< 0.02 cm).</p>
- Indicates, on average, #tracks from heavy flavor.

Composition Dependence: $(\epsilon_{Fake}/\epsilon_{Track}) vs R_{dxy}$

+ For μ+μ- data:

+ $N_{\mu}/N_{T} = 0.67\% \pm 0.13\%$

 $+ R_{dxy} = 4.3\% \pm 0.3\%$

+ $\epsilon_{\mu}/\epsilon_{T}(R_{dxy}) = 3.3 \pm 0.6$

+
$$f_{\mu}$$
=2.2% ± 0.6%

Background Tests

+ $\mu^+\mu^-\mu^\pm$ (MET < 50 GeV, H_T < 200 GeV, with Z candidate)

Obs	SM Total	Data Driven	TTbar	WZ(ZZ) FSR +Jets		
2	1.8±0.3	1.1	0.01	0.7	0	

+ $\mu^+\mu^-e^\pm$ (MET < 50 GeV, H_T<200 GeV, with Z Candidate)

Obs	SM Total	Data Driven	TTbar	WZ(ZZ) +Jets	FSR
2	1.4 ± 1.1	0.7	0.005	0.5	0.2

+ $\mu^+\mu^-T^\pm$ (MET < 50 GeV, H_T<200 GeV, with Z Candidate)

Obs	SM Total	Data Driven	TTbar	WZ(ZZ) +Jets	FSR
43	56 ± 12	55.8	0.02	0.25	0.3

April 19, 2011

R. Gray, Rutgers University

Observations and Backgrounds

Observed and Predicted are Consistent

$ZZ \rightarrow 4\mu$ Event

- + Bragging rights for being the first person to spot an interesting event.
 - + Spotted on Sunday 10-10-2010 early in data set.

Multi-Lepton Summary Table

No statistically significant deviation from the standard Model.

		After	Lepton ID Re	equirement		MET > 50 G	БеV	HT > 20	oo GeV	ML01	Signals
	Z+jets	tt	VV+jets	ΣSM	Data	ΣSM	Data	ΣSM	Data	Incl.	Hadr.
Channel			\bigvee		3-lep	oton channels	3				
ll(OS)e	1.7	0.1	1.2	4.4 ± 1.5	6	0.1 ± 0.1	0	0.2 ± 0.1	1	121.4	141.5
$ll(OS)\mu$	2.83	0.2	1.7	4.7 ± 0.5	6	0.10 ± 0.1	0	0.1 ± 0.1	0	123.6	120.8
ll(OS)T	121.5	0.5	0.7	123 ± 16	127	0.4 ± 0.1	0	-	-	80.5	-
$ll(OS)\tau$	476	2.7	3.9	484 ± 77	442	- < 1	-	0.6 ± 0.2	1	-	68
ll'T	0.72	0.5	0.2	1.7 ± 0.7	3	0.4 ± 0.2	2	-	-	18.6	-
$ll'\tau$	4.7	2.9	0.6	11.2 ± 2.5	10	- 1	-	0.4 ± 0.1	1	-	12.3
ll(SS)l'	0.13	0.1	0.0	0.2 ± 0.1	V 0/	0.2 ± 0.1	0	0	0	2.8	2.8
ll(SS)T	0.25	0.0	0.1	0.7 ± 0.4	3	0.1 ± 0.1	0	-	-	9.0	-
$ll(SS)\tau$	1.4	0.0	0.1	3.0 ± 1.1	3		_	0.0 ± 0.1	0	-	6.9
$\Sigma lll(T)$	127.1	1.4	3.8	135 ± 16	145	1.3 ± 0.2	2	-		355.9	-
$\Sigma lll(\tau)$	486.8	6.0	7.5	507 ± 77	467	() -)		1.3 ± 0.3	3	-	349.5
lTT	47.1	0.33	0.1	48 ± 9	30	0.4 ± 0.1	0	-	-	8.0	-
Channel				, ,	4-lep	oton channels	3 \ \				
1111	0	0	0.2	0.2 ± 0.1	2	0	0	0	0	163.9	149.2
lllT	0	0	0.1	0.1 ± 0.1	0	0	0	<u> </u>	-	62.3	-
$lll\tau$	0	0	0.1	0.1 ± 0.1	0	- /		0	0	-	33.2
llTT	0	0	0	0.0 ± 0.1	0	0	0	\ }	-	20.6	-
$ll\tau\tau$	3.1	0.1	0.1	3.2 ± 0.7	5	/-/	-	0	0	-	16.8
$\Sigma llll(T)$	0	0	0.3	0.3 ± 0.1	2	0	0	-	-	246.8	-
$\Sigma llll(\tau)$	3.1	0.1	0.4	3.5 ± 0.7	5	-	-	0	0		199.2

95% Excluded Scenarios (Multi-Leptons)

+ mSUGRA (CMSSM)

- + Popular scenario that reduces SUSY parameters down to 5.
 - + Mo, M1/2, ao, sign(μ), tan(β)
- No theorist believes mSUGRA, but it has become a standard to compare experiments.
- + Mass scenarios below solid line are now excluded.

95% Excluded Scenarios (Multi-Leptons)

+ Slepton co-NLSP

- Sleptons have ~ the same mass, and are closest to the lightest
 SUSY particle which happens to be a gravitino.
- + At least 4 leptons produced per event.
- + Mass scenarios below solid line are now excluded.
- Tevatron only excluded gluino mass < 400 GeV

95% Excluded Scenarios (Multi-Leptons)

+ R-parity violation

- R-parity is conserved in most SUSY scenarios. But it might be violated.
- + If violated leptonically, can be 4 or more leptons produced per event.
- + Two curves for two different scenariois.
 - + λ123 contains 2L+2Tau
 - + λ122 contain no Tau.
- + Mass scenarios below solid line are now excluded.

Conclusions

- + Various searches have been performed to look for new physics.
- + Presented SUSY in multi-leptons
 - + Use combination of MC and data-driven SM background predictions
 - + Make use of control objects to understand/control fake rate systematics.
 - + Results consistent with the standard model.
 - + Set new limits on slepton co-NLSP topology and R-Parity violating SUSY.
- + So far data still consistent with the SM, but have constrained the range of many SUSY possibilities beyond the reach of the Tevatron.
- More data is coming... another ~5 pb⁻¹ of golden data. The search will continue!