An alternative determination of the LEP beam energy I Calorimetry for the ILC

# Chris Ainsley <ainsley@hep.phy.cam.ac.uk>







# Part 1:An alternative determinationof the LEP beam energy

- Why verify the beam energy?
- The standard approach.
- The alternative approach:
  - method;
  - systematic errors;
  - results;
  - conclusions.



#### Why determine the beam energy accurately?

- Accurate knowledge of beam energy ( $E_b$ ) important for many precision measurements at LEP.
- Relevant for measurement of  $\int \mathcal{L} dt$  via Bhabha cross-section  $\propto 1/\frac{E_b^2}{E_b^2} \Rightarrow$  fundamental to all cross-section determinations:

$$\frac{\Delta\sigma}{\sigma} = \frac{2\Delta E_{\rm b}}{E_{\rm b}}$$

• Vital for accuracy of  $m_W$  measurement—a main objective of LEP II program  $\rightarrow$  resolution improved through kinematic fit constraints:

$$\frac{\Delta m_{\rm W}}{m_{\rm W}} = \frac{\Delta E_{\rm b}}{E_{\rm b}}$$

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

## The standard LEP energy calibration

- Measured at LEP I energies ( $E_b \sim 45 \text{ GeV}$ ) by resonant depolarization (RDP).
- Relies on ability to generate LEP beams with detectable spin polarizations.
- Polarization can be destroyed by oscillating *B*-field when in phase with spin precession.
- At resonance, can infer the "spin-tune", v:

$$v = \frac{f_{\text{prec}}}{f_{\text{rev}}} = \frac{g_e - 2}{2} \cdot \frac{E_b}{m_e c^2}$$

- RDP works up to  $E_{\rm b}$  ~ 60 GeV, but fails at LEP II energies ( $E_{\rm b}$  ~ 100 GeV).
- At LEP II, fit lower energy RDP measurements with  $E_b = a + bB$ ; deduce  $E_b$  from B-field (using NMR probes) at physics energies  $\rightarrow$  magnetic extrapolation.
- Yearly uncertainty on  $E_{\rm b}$  ~ 20 MeV; is this reliable?

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 4

#### The radiative return approach

 Select fermion-pair events which exhibit "radiative return to the Z" (resonant enhancement)...



...and construct:

- $\int s' = f\bar{f}$  invariant mass (f = q, e<sup>-</sup>,  $\mu^-$ ,  $\tau^-$ )
  - =  $Z/\gamma$  propagator mass
  - = centre-of-mass energy after initial-state radiation (ISR).
- $\int s'$  sensitive to  $E_b$  through energy and momentum constraints in kinematic fits.
- Use events with  $\sqrt{s'} \sim m_Z$  to reconstruct 'pseudo'-Z peak in MC ( $E_b$  known exactly) and in data ( $E_b$  inferred by measurement).
- Attribute any relative shift between peaks to a discrepancy in the measurement of the beam energy:  $\Delta E_{\rm b}$ .

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 5

#### $\sqrt{s'}$ reconstruction

- Hadronic channel:
  - Invoke standard hadronic selection.
  - Identify all isolated photons.
  - Force remaining system into jets (Durham scheme).
  - Apply kinematic fit without/ with unseen photon(s) along  $\pm z$ , using jet energies and angles, and  $(E, \vec{p})$ conservation.
  - Retain events with exactly one reconstructed photon (either in Ecal or along ±z).
  - Compute Js' from jet energies and momenta:

 $\int s' = m_{jet-jet}$ .

- Leptonic channels:
  - Invoke standard leptonic selection.
  - Identify highest energy isolated photon; if no photons found, assume one along ±z.
  - Treat event as having 3 finalstate particles: ℓ+ℓ-γ.
  - Compute √s' from angles alone, imposing (E, p) conservation:
    - $s' sin\chi_1 + sin\chi_2 |sin(\chi_1 + \chi_2)|$
    - $\overline{s} = \frac{1}{\sin\chi_1 + \sin\chi_2 + |\sin(\chi_1 + \chi_2)|}$

# **Reconstructed** $\sqrt{s'}$ distributions

• 1997-2000 OPAL data:



- Dominated by radiative-return and full-energy events.
- (a) qq̄γ: high statistics, b/g ~ 4 % under peak → mainly qq̄e⁺e⁻ (resonant); √s' resolution ~ 2 GeV.
- (b) μ<sup>+</sup>μ<sup>-</sup>γ: lower statistics, but very low b/g and excellent angular resolution.
- (c)  $\tau^+\tau^-\gamma$ : low efficiency, worse resolution and larger b/g.
- (d) e<sup>+</sup>e<sup>-</sup>γ: small signal, dwarfed by t-channel contribution.

#### Fitting the peak

- Analytic function fitted to reconstructed  $\int s'$  distribution in MC at known  $E_b = E_b^{MC}$  around 'pseudo'-Z peak.
- Same function fitted to reconstructed  $\int s'$  distribution in data, assuming  $E_{\rm b} = E_{\rm b}^{\rm LEP}$  (normalization/peak position free to vary).



Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 8

#### Extraction of beam energy (e.g. $q\bar{q}\gamma$ channel)

 Repeat function fitting in data as a function of assumed discrepancy, ΔE<sub>b</sub> = E<sub>b</sub><sup>OPAL</sup> - E<sub>b</sub><sup>LEP</sup> (= -450, -300, -150, 0,+150,+300 MeV); use peak position (M\*) to characterize overall √s' energy scale. E.g. 1998 data:



• Extract optimum value of  $\Delta E_{\rm b}$  where  $M^*$  in data matches MC expectation.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

9

#### Dominant systematic errors

• Hadronic channel:

| Effect                      | Error /MeV |  |  |
|-----------------------------|------------|--|--|
| Detector modelling          | 34         |  |  |
| (jet mass scale             | 25)        |  |  |
| (jet energy scale           | 17)        |  |  |
| (photon energy scale        | 12)        |  |  |
| (jet angular scale          | 9)         |  |  |
| (other                      | 7)         |  |  |
| Fragmentation/hadronization | 16         |  |  |
| Fit parameters              | 3          |  |  |
| ISR modelling               | 3          |  |  |
| Backgrounds                 | 1          |  |  |
| I/FSR interference          | 1          |  |  |
| Beam energy spread/boost    | 1          |  |  |
| Total                       | 38         |  |  |
| Monte Carlo statistics      | 5          |  |  |
| LEP calibration             | 11         |  |  |
| Full Total                  | 40         |  |  |

#### • Leptonic channels:

| Effect                    | Error<br>/MeV |       |       |
|---------------------------|---------------|-------|-------|
|                           | μ⁺μ⁻γ         | τ⁺τ⁻γ | e⁺e⁻γ |
| Lepton angular scale      | 21            | 66    | 24    |
| Lepton angular resolution | 2             | 4     | 7     |
| Fit parameters            | 1             | 4     | 10    |
| ISR modelling             | 1             | 7     | 10    |
| Non-resonant background   | < 1           | 6     | 4     |
| Bhabha/ <i>t</i> -channel | < 1           | 3     | 5     |
| Beam energy spread/boost  | 2             | 5     | 6     |
| Total                     | 21            | 67    | 30    |
| Monte Carlo statistics    | 9             | 34    | 34    |
| LEP calibration           | 11            | 11    | 11    |
| Full Total                | 25            | 76    | 46    |

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 10

#### **Beam energy measurements**

•



<ainsley@hep.phy.cam.ac.uk>

 All qqγ data:  $\Delta E_{\rm b}$  = +1 ± 38 ± 40 MeV. All l+l-γ data:  $\Delta E_{\rm b} = -2 \pm 62 \pm 24$  MeV. - all  $\mu^+\mu^-\gamma$  data:  $\Delta E_{\rm h} = -32 \pm 75 \pm 25$  MeV. - all  $\tau^+\tau^-\gamma$  data:  $\Delta E_{\rm b}$  = +313 ± 175 ± 76 MeV. all e<sup>+</sup>e<sup>-</sup>γ data:  $\Delta E_{\rm b} = -88 \pm 146 \pm 46$  MeV. All  $ff_{\gamma}$  data combined:  $\Delta E_{\rm b} = 0 \pm 34 \pm 27$  MeV.

# **Conclusions**

- Beam energy from radiative fermion-pairs consistent with standard LEP calibration
  - $\Rightarrow$  vindication for magnetic extrapolation procedure;
  - $\Rightarrow$  good news for  $m_W$  determination.
- Systematic uncertainties 38  $(q\bar{q}\gamma)$ , 21  $(\mu^+\mu^-\gamma)$ , 67  $(\tau^+\tau^-\gamma)$ , 30  $(e^+e^-\gamma)$  MeV; cf. ~ 20 MeV error on magnetic extrapolation.
- For more info, see Phys. Lett. B 604, 31 (2004).
- Standard LEP approach requires circulating beams; not appropriate for a linear collider.
- Radiative return approach independent of accelerator specs  $\rightarrow$  potential method for measuring  $E_{\rm b}$  at a high-statistics future linear collider: the ILC.
- Possibility under investigation...

# Part 2: Calorimetry for the ILC

- Why do we need the ILC?
- The physics objectives.
- The calorimeter requirements & how to achieve them.
- The CALICE program:
  - overview;
  - prototypes & test beams;
  - simulation;
  - reconstruction.



# The International Linear Collider (ILC)

- Widespread worldwide support for an  $e^+e^-$  linear collider operating at  $\sqrt{s} = 0.5-1$  TeV.
- August '04: International Technology Review Panel recommended adoption of superconducting (TESLA-like) technology for the accelerator.
- Asia, Europe and North America lined up behind decision; agreed to collaborate on technical design.
- Timescale for physics set by ILC Steering Group
  - first collisions ~ 2015;
  - detector TDRs in 2009;
  - formation of experimental collaborations in 2008.
- Much to be done in next 3 years!





14

# ILC/LHC synergy

- ILC will provide precision measurements (masses, branching fractions, *etc*.) of physics revealed by LHC:
  - properties of Higgs boson(s);
  - characterization of SUSY spectrum;
  - precision measurements of the top quark;
  - strong electroweak symmetry breaking;
  - much, much more...
- Overlapping running of LHC/ILC beneficial to physics capabilities of both machines ( $\Rightarrow$  aim for collisions in 2015).
- Dedicated study group investigating synergy between ILC and LHC [see LHC-LC Study Group, hepph/0410364 ~ 500 pages!]

## ILC physics objectives

- Many of the "interesting" processes involve multi-jet (6/8 jets) final states, as well as leptons and missing energy.
- Accurate reconstruction of jets key to disentangling these processes.
- Small signals, e.g. σ(e<sup>+</sup>e<sup>-</sup> → ZHH) ~ 0.3 pb at 500 GeV.
   ⇒ require high luminosity.
   ⇒ need detector optimized for precision measurements in a difficult environment.



#### Comparison with LEP

- Physics at LEP dominated by  $e^+e^- \rightarrow Z$ and  $e^+e^- \rightarrow W^+W^-$ ; backgrounds not too problematic.
- Kinematic fits used for mass (e.g.  $m_W$ ) reconstruction  $\Rightarrow$  shortcomings of jet energy resolution surmountable.
- Physics at ILC dominated by backgrounds.
- Beamstrahlung, multi-v final states, SUSY(?)
  - $\Rightarrow$  missing energy (unknown);
  - $\Rightarrow$  kinematic fitting less applicable.
- Physics performance of ILC depends critically on detector performance (unlike at LEP).
- Stringent requirements on ILC detector, especially the calorimetry.
- Excellent jet energy resolution a must!



University of Pennsylvania HEP Seminar November 1, 2005

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 17

#### $W^{\pm}/Z$ separation at the ILC

- Jet energy resolution impacts directly on physics sensitivity.
- If Higgs mechanism not realized in nature, then QGC processes become important:

 $e^+e^- \rightarrow v_e \bar{v}_e W^+W^- \rightarrow v_e \bar{v}_e q_1 q_2 q_3 q_4;$  $e^+e^- \rightarrow v_e \bar{v}_e ZZ \rightarrow v_e \bar{v}_e q_1 q_2 q_3 q_4.$ 

- To differentiate, need to distinguish  $W^{\pm} \rightarrow qq$ , from  $Z \rightarrow qq$ .
- Requires unprecented jet energy resolution:

 $\sigma_{\rm E}/E \sim 30\%/J(E/GeV).$ 

• Best acheived at LEP (ALEPH):  $\sigma_{\rm E}/E \sim 60\%/J(E/GeV).$ 



#### $W^{\pm}/Z$ separation at the ILC

• Plot  $jet_1$ - $jet_2$  invariant mass vs  $jet_3$ - $jet_4$  invariant mass:



LEP detector

 $\sigma_{\rm E}/\textit{E} \sim 60\%/\textit{J(E/GeV)}$ 

 $\frac{120}{60} = 0.30 \sqrt{E_{jet}}$ 

ILC detector

 $\sigma_{\rm E}/E \sim 30\%/J(E/GeV)$ 

• Discrimination between W<sup>+</sup>W<sup>-</sup> and ZZ final states achievable at ILC.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 19

#### Higgs potential at the ILC

- If Higgs does exist, probe potential via trilinear HHH coupling in:  $e^+e^- \rightarrow ZHH \rightarrow qqbbbb.$
- Signal cross-section small; combinatoric background large (6 jets).
- Use discriminator:



Dist =  $((M_{H} - M_{12})^2 + (M_{z} - M_{34})^2 + (M_{H} - M_{56})^2)^{1/2}$ .



- Measurement possible at ILC with targeted jet energy resolution.
- How can this goal actually be achieved?

# The particle flow paradigm

- LEP/SLD  $\Rightarrow$  optimal jet energy resolution achieved through particle flow paradigm.
- Reconstruct 4-momentum of each and every particle in the event using the best-suited detector:
  - charged particles (~ 65 % of jet energy)  $\rightarrow$  tracker;
  - photons (~ 25 %)  $\rightarrow$  Ecal;
  - neutral hadrons (~ 10 %)  $\rightarrow$  (mainly) Hcal.
- Replace poor calorimeter measurements with good tracker measurements
   ⇒ explicit track-cluster associations; avoiding double counting.



• Need to efficiently separate energy deposits from different particles in a dense environment.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

21

# The particle flow paradigm

- Jet energy resolution:  $\sigma^2(E_{jet}) = \sigma^2(E_{ch.}) + \sigma^2(E_{\gamma}) + \sigma^2(E_{h0}) + \sigma^2(E_{confusion}).$
- Excellent tracker  $\Rightarrow \sigma^2(E_{ch})$  negligible.
- Other terms calorimeter-dependent.
- Expect σ(E<sub>i</sub>) = A<sub>i</sub> √E<sub>i</sub> for i=γ,h0 (≈ intrinsic energy resolution of Ecal, Hcal, respectively: A<sub>y</sub> ~ 11 %, A<sub>h0</sub> ~ 50 %).
- Since  $E_i = f_i E_{jet} (f_{\gamma} \sim 25 \%, f_{h0} \sim 10 \%)$ :  $\sigma(E_{jet}) = \sqrt{\{(17 \%)^2 E_{jet} + \sigma^2(E_{confusion})\}}$ . • Ideal case,  $\sigma(E_{confusion}) = 0$
- Ideal case,  $\sigma(E_{\text{confusion}}) = 0$  $\Rightarrow \sigma(E_{\text{jet}}) = 17 \% J E_{\text{jet}};$ 
  - $\Rightarrow$  desired resolution attainable (in principle).
- Reality dictated by wrongly assigned energy.
- Ability to separate E/M showers from charged hadron showers from neutral hadron showers is critical.
- Granularity (*i.e.* spatial resolution) more important than intrinsic energy resolution.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

22





#### Calorimeter requirements

- Implications of particle flow on calorimeter design:
  - excellent energy resolution for jets;
  - excellent energy/angular resolution for photons;
  - ability to reconstruct non-pointing photons;
  - hermeticity.

•

- Need to separate energy deposits from individual particles
   ⇒ compact, narrow showers;
   ⇒ small X and P and high lateral annularity ~ Q(P)
  - $\Rightarrow$  small  $X_0$  and  $R_{Molière}$  and high lateral granularity ~  $O(R_{Molière})$ . Need to discriminate between E/M and hadronic showers
  - ⇒ force E/M showers early, hadronic showers late; ⇒ small  $X_0$ :  $\lambda_{had}$  absorber and high degree of longitudinal segmentation.
- Need to separate hadronic showers from charged and neutral particles
- $\Rightarrow$  strong *B*-field (also good for retention of background within beampipe).
- Need minimal material in front of calorimeters
- $\Rightarrow$  put the Ecal and Hcal inside coil (at what cost?).

#### Calorimeter requirements

- Ecal and Hcal inside coil  $\Rightarrow$  better performance, but impacts on cost.
- Ecal  $\rightarrow$  silicon-tungsten (Si/W) sandwich:
  - Si  $\rightarrow$  pixelated readout, compact, stable.
  - $W \rightarrow X_0: \lambda_{had} \sim 1:25;$
  - $R_{Molière} \sim 9 \text{ mm}$  (effective  $R_{Molière}$ increased by inter-W gaps)  $\Rightarrow 1 \times 1$ cm<sup>2</sup> lateral granularity for Si pads;
  - longitudinal segmentation: 40 layers  $(24X_0, 0.9\lambda_{had})$ .
- Hcal → ??/steel (??/Fe) sandwich (?? is a major open question):
  - ?? = scintillator  $\Rightarrow$  analog readout (AHcal), lower granularity (~  $5 \times 5$ cm<sup>2</sup>)  $\rightarrow$  electronics cost.
  - ?? = RPCs, GEMs, ... ⇒ digital readout (DHcal), high granularity (1×1 cm<sup>2</sup>) → count cells hit ∞ energy (if 1 hit per cell).





Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

#### CALICE

- CAlorimeter for the LInear Collider Experiment  $\rightarrow$  collaboration of 190 members, 32 institutes (Asia, Europe & North America).
- R&D on calorimetry; working towards beam tests of prototypes in a common hardware+software framework.
- Focus on high granularity, fine segmentation.
- Aims to:
  - test technical feasibility of hardware;
  - compare alternative concepts (e.g. AHcal vs DHcal);
  - validate simulation tools (especially modelling of hadronic showers);
  - prove (or disprove) the viability of a particle flow detector;
  - justify cost for high granularity.
- Pre-prototype Ecal already (mostly) built; part-tested with cosmic rays (Paris, DESY) and low energy (1-6 GeV) e<sup>-</sup> beam (DESY).

#### ECAL prototype overview



# Ecal prototype electronics

- CALICE readout card (CRC) based on CMS tracker FE driver board (saved time!).
- Designed/built by UK institutes (Imperial, RAL, UCL).
- Receives 18-fold multiplexed analog data from up to 96
   VFE chips (= 1728 channels ⇒ 6 cards required for full prototype).
- Digitizes; on-board memory to buffer ~ 2000 events during spill.
- AHcal plan to use same CRCs.





#### Cosmic ray tests

- Cosmic calibration, Dec. 2004 (LLR, Paris).
- E.g. of response vs ADC value for 6×6 cm<sup>2</sup> wafer (36 1×1 cm<sup>2</sup> Si pads) → Gaussian noise; Landau signal (mip):





#### Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

28

#### Cosmic ray tests





40

20

-20

- E.g. of cosmic ray event.
- Single Si wafer; full read-out chain.
- Triggered by coincidence in scintillators.
- Track extrapolated through Si wafer.
- See clear signal over background.

#### Cosmic ray tests

- 10 layers assembled, Dec. 2004 (LLR, Paris).
- > 10<sup>6</sup> events recorded over Xmas (unmanned).
- Signal/noise ~ 9.
- This event: Jan 4, 2005.



#### Beam tests

- Jan. 12, '05
   Ecal hardware moved to DESY.
- Jan. 13-14
   14 layers, 2×3 wafers/ layer assembled ⇒ 84 wafers total ⇒ 3024 Si pixels (1/3 complete).
- Jan. 17
  - First e<sup>-</sup> beam recorded, triggered by drift chamber (200 μm resolution).
- Jan. 18 This event (<mark>6 GeV e</mark>-):



RodHeader::print() Record Time = 15:54:23:784:456 Tue Jan 18:2005, Type = 5 = event

DaqEvent::print() Event numbers in run 0, in configuration 0, in spill 0

## CALICE test beam schedule

32



Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 10-12/2005 ECAL only, cosmics, DESY.

1-3/2006

- <mark>6 GeV e⁻</mark> beam, <mark>DES</mark>Y (complete ECAL: 9720 channels).
- 9-11/2006 Physics run at CERN, with AHcal.
- mid-2007
   To FNAL MTBF.
- ECAL: 30 layers W+Si.
- HCAL: 40 layers Fe +
  - "analogue" tiles:
    - scintillator tiles;
    - 8k, 3x3 cm<sup>2</sup> -12x12 cm<sup>2</sup>.
  - "digital" pads:
    - RPCs, GEMs;
    - 350k, 1x1 cm<sup>2</sup>.

#### Simulation

- Hadronic shower development poorly understood in simulation.
- Geant3 (histo) and Geant4 (points) show basic differences.



- Need reliable simulation to optimize proposed detector for ILC.
- Use test beam data to critically compare different models.
   Chris Ainsley
   33
   University of Pennsylvania HEP Seminar
   <ainsley@hep.phy.cam.ac.uk>
   November 1, 2005

#### Comparing the models

- Compare G3 and G4 (and Fluka) with different hadronic shower models.
- E.g. 10 GeV  $\pi^-$ ; Si/W Ecal, RPC/Fe Hcal:



- Ecal shows some E/M discrepancies, but general consistent behavior.
- Hcal variation much more worrisome.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 34

# Comparing the models

• Extend to comparison between RPC and scintillator Hcal alternatives.



- RPC Hcal less sensitive to low energy neutrons than scintillator Hcal.
- Enforces need for test beam data.
- Guides test beam strategy (energies, statistics, etc.).

35

#### Calorimeter cluster reconstruction

- Reconstruction software development heavily reliant on simulation.
- Essential for detector optimization studies.
- Highly granular calorimeter → very different from previous detectors.
- Shower-imaging capability.
- Requires **new approaches** to cluster reconstruction.
- Must have minimal ties to geometry.
- Ingenuity will dictate success of particle flow.



#### $\pi^+/\gamma$ : Si/W Ecal + RPC/Fe DHcal



#### Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

37

#### **Reconstructed clusters**



- Black cluster matched to charged track.
- Red cluster left over as neutral  $\Rightarrow \gamma$  energy well reconstructed.
  - University of Pennsylvania HEP Seminar November 1, 2005

#### $\pi^+/\gamma$ : Si/W Ecal + RPC/Fe DHcal



- 1k single  $\gamma$  at 5 GeV/c.
- Fit Gaussian to energy distribution, calibrated according to:

$$E = \alpha [(E_{\text{Ecal}; 1-30} + 3E_{\text{Ecal}; 31-40})/E_{\text{Ecal mip}} + 20N_{\text{Hcal}}].$$

- Fix factors  $\alpha$ , 20 by minimising  $\chi^2$ /dof.
- $\sigma/J\mu \sim 14\% JGeV$ .

#### Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

38



- 1k  $\gamma$  with nearby  $\pi^+$  (10, 5, 3, 2 cm from  $\gamma$ ).
- Peak of photon energy spectrum well reconstructed; improves with separation.
- Tail at higher  $E \rightarrow$  inefficiency in  $\pi^+$  reconstruction.
- Spike at E = 0 below 3 cm → clusters not distinguished.

## $\pi^+/n$ : Si/W Ecal, RPC/Fe DHcal



• Red cluster = 5 GeV/c n.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 39

**Reconstructed clusters** 



 Black cluster matched to charged track.
 Red cluster left over as neutral ⇒ n energy well reconstructed.

## $\pi^+/n$ : Si/W Ecal, RPC/Fe DHcal

40



- 1k single n at 5 GeV/c.
- Fit Gaussian to energy distribution, calibrated according to:

$$E = \alpha [(E_{\text{Ecal}; 1-30} + 3E_{\text{Ecal}; 31-40})/E_{\text{Ecal mip}} + 20N_{\text{Hcal}}].$$

- Fix factors  $\alpha$ , 20 by minimising  $\chi^2$ /dof.
- σ/Jμ ~ 73% JGeV.

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>

$$\frac{\pi^{2}}{35} = \frac{\pi^{2}}{35} = \frac{\pi^{2}}{10} = \frac{\pi^$$

- 1k n with nearby  $\pi^+$  (10, 5, 3, 2 cm from n).
- Peak of neutron energy spectrum well reconstructed; improves with separation.
- Spike at E = 0 even at 10 cm  $\rightarrow$  clusters not distinguished.

#### $\pi^+/n$ : Si/W Ecal, RPC/Fe Hcal



Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 41

University of Pennsylvania HEP Seminar November 1, 2005



Nothing left over as neutral  $\Rightarrow$  n

not reconstructed (*i.e.* E = 0).

#### π<sup>+</sup>/γ: Si/W Ecal + scintillator/Fe AHcal



- 1k single  $\gamma$  at 5 GeV/c.
- Fit Gaussian to energy distribution, calibrated according to:

$$E = \alpha [(E_{\text{Ecal; 1-30}} + 3E_{\text{Ecal; 31-40}})/E_{\text{Ecal mip}} + \frac{5E_{\text{Hcal}}}{E_{\text{Hcal mip}}}]$$

• Fix factors 
$$\alpha$$
, 5 by minimising  $\chi^2$ /dof

•  $\sigma/J\mu \sim 14\% JGeV$  (as for DHcal).

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 42





- 1k  $\gamma$  with nearby  $\pi^+$  (10, 5, 3, 2 cm from  $\gamma$ ).
- General trends much as for DHcal.

#### $\pi^+/n$ : Si/W Ecal + scintillator/Fe AHcal



- 1k single n at 5 GeV/c.
- Fit Gaussian to energy distribution, calibrated according to:

$$E = \alpha [(E_{\text{Ecal}; 1-30} + 3E_{\text{Ecal}; 31-40})/E_{\text{Ecal mip}} + 5E_{\text{Hcal}}/E_{\text{Hcal mip}}].$$

- Fix factors  $\alpha$ , **5** by minimising  $\chi^2$ /dof.
- $\sigma/J\mu \sim 62\% JGeV$  (cf. 73% JGeV for DHcal).

Chris Ainsley <ainsley@hep.phy.cam.ac.uk>



1k n with nearby π<sup>+</sup> (10, 5, 3, 2 cm from n).
General trends much as for DHcal.

University of Pennsylvania HEP Seminar November 1, 2005

43

#### $\pi^+$ /neutral cluster separability vs separation

5 GeV/*c* π⁺/γ



 Fraction of events with photon energy reconstructed within 1,2,35 generally higher for DHcal ("D09") than for AHcal ("D09Scint").

Chris Ainsley <ainsley@hep.phy.cam.ac.uk> 44

5 GeV/*c* π⁺/n



- Similar conclusion for neutrons.
- RPC DHcal favored over scintillator AHcal?
- Needs further investigation...

# **Conclusions**

- ILC: an e<sup>+</sup>e<sup>-</sup> linear collider operating in the range 0.5-1 TeV.
- Will complement LHC's discovery potential by providing precision measurements.
- Requires unprecedented jet energy resolution.
- Achieved through combination of highly granular calorimetry and particle flow.
- Detector optimization relies on realistic simulation (especially of hadronic showers).
- Needs test beam data for verification.
- **CALICE** collaboration leading the way.
- For more info, go to http//:www.hep.phy.cam.ac.uk/calice/