Looking for WIMPs in the Galactic Halo: the Cryogenic Dark Matter Search

Dan Akerib Case Western Reserve University CDMS Collaboration

U. Penn HEP Seminar 27 Sept 2005

The CDMS Collaboration

Brown University

R.J. Gaitskell, J.P. Thompson, M. Attisha Caltech

S. Golwala, G. Wang

Case Western Reserve University

D.S. Akerib, C.N. Bailey, M.R. Dragowsky, D.R. Grant, R. Hennings-Yeomans, R.W. Schnee

Fermi National Accelerator Laboratory

D.A. Bauer, M. Crisler, R. Dixon,

D. Holmgren, E. Ramberg, J. Yoo

Lawrence Berkeley National Lab

R.J. McDonald, R.R. Ross,

A. Smith

Nat'l Institute of Standards & Tech.

K. Irwin

University of Florida

L. Baudis, S. LeClercq, T. Saab

Santa Clara University

B.A. Young

Stanford University

J. Cooley-Sekula, P.L. Brink, B.Cabrera, C. Chang, W. Ogburn, M.Pyle

University of California, Berkeley

M. Daal, A. Lu, J. Fillipini, P. Meunier, N. Mirabolfathi, B. Sadoulet, B.Serfass, K. Sundquist

University of California, Santa Barbara

R. Bunker, D.O. Caldwell, H. Nelson,

J. Sander, R. Mahapatra, S. Yellin

University of Colorado at Denver

M. E. Huber

University of Minnesota

P. Cushman, L. Duong, A. Riesetter

Dynamical Evidence: Galactic Halos

Dynamical Evidence: Galaxy clusters

Standard Cosmology

Too few baryons

•Big Bang Nucleosynthesis

- Constrain baryon density based on relative abundance of light elements from hot big bang
- One-parameter model: baryon density
- Best constraint: D/H in primordial gas clouds (Burles & Tytler)

 Ω_{Baryons} = 0.05 ± 0.005

Non-Baryonic Dark Matter

WIMPs in the Galactic Halo

Direct Detection and Accelerators

- Broad mass range of Direct
 Detection
 - LHC has 2 Tev limit for gluino, squark, slepton: neutralinos only up to 300 GeV in most SUSY models
 - Direct Detection may indicate a mass too large for LHC but reachable by ILC
- Accelerators reach down to
 lower elastic cross section
 - Potential guidance for direct detection searches
 - Rich Physics in overlap region of LHC and SuperCDMS-25 kg
 - Exciting opportunity to establish concordant model

WIMPs and SUSY

- LHC/ILC constraints compared with direct DM searches
 - Specify a benchmark model, eg, here LCC1 is mSugra 'bulk region,' consistent with WMAP relic density
 - Explore range of all models compatible with accelerator data
 - Constrain secondary parameters

Baltz and Peskin, 2005 prelim.

How do we make measurements?

What nature has to offer

What you hope for!

Different types of particles

WIMPs and Neutrons scatter from the Atomic Nucleus

> Photons and Electrons scatter from the Atomic Electrons

> > Thanks to M. Attisha

Getting rid of the 'haystack': Recoil Discrimination

WIMPs 'look' different – recoil discrimination Photons and electrons scatter from electrons WIMPs (and neutrons) scatter from nuclei

Getting rid of the 'haystack': Recoil Discrimination

WIMPs 'look' different – recoil discrimination Photons and electrons scatter from electrons WIMPs (and neutrons) scatter from nuclei

'Cryogenic' detectors

- Heat sensitive detectors sensitive to *individual particle interactions.*
- Operated near absolute zero ("cryogenic")
- Our experiment is called the Cryogenic Dark Matter Search (CDMS)

• The detectors are cooled in dilution refrigerators to ~20mK

Superconducting Films: Ultrasensitive Thermometers

Superconducting films that detect minute amounts of heat

Transition Edge Sensor sensitive to fast athermal phonons

The Voltages We Measure

Betas: a low-yield background source

CDMS Strategy

- Minimize residual contamination
- Underground site: hadrons, μ
- Muon veto: cosmogenic γ, β, n
- Pb shield: γ, β
- Polyethylene shield (moderator): n
- Charge yield: γ, β
- Phonon-pulse timing: surface events (β)
- Multiple-scatters: n
- Silicon vs Germanium: n
- Position information: optimization/systematics

Got Neutrons? – Go Deep...

The CDMS II Apparatus

• The Soudan Mine refrigerator includes a low-radioactivity '*clean room*' shielded environment

- Science data commenced October 2003
- 2000 mwe depth
 - ~10⁵ reduction in muon flux
 - ► ~400x reduction in fast neutrons
- Results from running first two "Towers"

Detector Towers in Soudan

In situ Energy Calibration (after position corrections)

Ionization Energy resolution 8-10 keV (at 356 keV) 0.3 keV (at 10 keV)

¹³³Ba peaks in a Ge ZIP 1000 900 800 75 keV 384 ke\ =2.5 keV at 356 keV 700 600 500 400 ՙՄետու՛՝ 300 200 ^{ՄՆՆ}ՆՆՈՄ ՄՆՆՆՆՈՄ ՄՆՆՆՆՈՄ 100 250 300 350 400 **Ionization energy (keV-ee)**

Normalize phonon recoil energy to ionization energy for gammas from ¹³³Ba.

Mask signal region: Blind analysis to minimize bias

- Cuts set on calibration data and non-masked WIMP-search data
 - timing parameter
 - ionization yield
 - problem detectors/channels

CDMS Blind Analysis & Background Leakage

- Mask signal region in WIMP-Search Data
 - hide oversized nuclear-recoil band, single-scatter, unvetoed
- Base cuts on calibration data (previous slide)
- Estimate leakage by normalizing to non-masked WIMP search data
 - eg, multiple-scatter events in reduced-yield region predicts leakage into signal region
 - Tune cuts for ~0.5 background
- Signal region defined by neutron calibration
- UNBLIND

First Soudan Run WIMP-search data

19 kg-d after cuts

0.02 recoils from neutrons expected (w/ Z1)

Second Soudan Run WIMP-search data

Candidate event: poor neutralization

- Automatic LED flash every 4 hours to discharge trapping sites
- The one candidate event comes from a run with poor neutralization!
 - anomalous population of low-yield events
 - improved screening for next run
 - anyway, consistent with background
 - included (worsen) upper limit on cross section

1st Year CDMS Soudan Combined Limits

- Upper limits on the WIMP- nucleon cross section are 1.7×10⁻⁴³ cm² for a WIMP with mass of 60 GeV/c²
 - Factor 10 lower than any other experiment
- Excludes regions of SUSY parameter space under some frameworks
 - Bottino et al. 2004 in magenta (relax GUT Unif.)
 - Ellis et al. 2005 (CMSSM) in green

1-tower: Phys. Rev. Lett. **93**, 211301 (2004); astro-ph/0507190 (PRD - in press)

2-tower and combined: astro-ph/0509259

Spin-Dependent WIMP limits

Following the method of C. Savage, P. Gondolo, and K. Freese, PRD70, 123513 (2004) (astro-ph/0408346).

astro-ph/0509269

Improvement to surface rejection

- Performed 4 other blind analyses (consistent results 20%)
 - Primary analysis (Ge) based on simple/robust timing parameters -energy-corrected delay + risetime -- chosen before unmasking
 - More sophisticated analyses -- more detector information (position, phonon energy partitions)

Better rejection for planned exposure: can expect approx. zero background in 5tower run

Projected CDMS Sensitivity

SuperCDMS: phased approach to 1-ton

Phase A: technology baseline

- Increase thickness from 1 cm to 1
 inch
 - Less surface area per mass, so 2.54x fewer background surface events per unit mass
 - Eases production -- make fewer detectors for a given mass
- Optimize amorphous-Si electrodes
 - Yield-only discrimination of ZIPs is 2x worse than older detectors made with different recipe. Return to old recipe (17:83 H₂:Ar atmosphere) and optimize.

CDMS II ZIPs: 3" diameter x 1 cm \Rightarrow 0.25 kg Ge

SuperCDMS ZIPs: 3" diameter x 1" \Rightarrow 0.64 kg Ge

Also working to develop other, potentially more significant improvements (more on that) -- above two straightforward changes may well be enough.

Photon and Electron Backgrounds

SuperCDMS Phase A: zero background goal in reach

	Photons	Electrons
Current raw rate (events/ exposure) [<mark>25 kg</mark> , 500 days]	1 x 10 ⁶	2 x 10 ³
Published rejection	10 ⁶ :1	130:1
Rate after rejection	1	10
In hand	0.5	5
Improve detectors (5x)	0.5	1
Improve analysis (2x)	0.5	0.5
Reduce rates	0.5	0.5
Phase A Goal	0.5	0.5

•Improve rejection

- in hand: better phonontiming cuts give ≥350:1 rejection
- by further analysis improvements
- via improving detectors
- •Reduce raw rates via better shielding, cleanliness

•Electrons in Phase A:

- for 25 kg in 500 days expect 5 events
- detector improvements alone are sufficient
 - thickness 2.5x
 - contacts 2x

Cryostat & Shield Design Concepts

- Design concepts with low head-clearance
- Allows for 50% increase in neutron moderator
 - fission and (alpha,n) processes

SNOBox at SNOLab

Summary

- Dark matter remains a fundamental mystery
 - Strong and timely ties to frontier HEP at accelerators
 - An essential aspect finding a concordant model
 - dark matter in the laboratory ≠ dark matter in the halo!
 - Recognized as high priority in various NRC and Advisory group studies
- CDMS
 - forefront technology
 - best sensitivity to date
- SuperCDMS is ready to begin 25 kg Phase
 - Explore interesting SUSY region on similar time scale to LHC
 - Potential to provide key info to ILC
 - Strong case for funding on SNOLab time scale
 - Expansion capability a good match for SNOLab
 - Engineering challenges at SNOLab straightforward
 - Exciting opportunities for new collaborators to participate now and establish path for the future

The CDMS Collaboration

2002 collaboration meeting, 2000 feet underground

Thank you...

...and visit us on the web at cdms.case.edu