

naixing at ODE

Aart Heijboer

Overview

- Introduction
 - Motivation
 - CDF Detector / Trigger
- Analysis
 - Signal Reconstruction
 - Lifetime Measurement
 - Flavor Tagging and Calibration
- Results
- Summary and Future Prospects
- Public documentation is available at:
 - http://www-cdf.fnal.gov/physics/new/bottom/bottom.html

Updated Study of B_s Oscillations in $B_s ightarrow D_s(3)\pi$

76 people from 24 institutions

B_s Mixing group

Farrukh Azfar ¹⁹, Gary Barker ⁷, Gerry Bauer ¹³, Franco Bedeschi ¹⁰, Satyajit Behari ¹⁵, Stefano Belforte ¹¹, Alberto Belloni ¹³, Eli Ben-Haim ¹², Juerg Beringer ⁵, Arkadiy Bolshov ¹³, Joe Boudreau ²², Massimo Casarsa ¹¹, Pierluigi Catastini ¹⁰, Alessandro Cerri ⁵, Agnese Ciocci ¹⁰, David Clark ², Saverio D'Auria ⁶, Saverio Da Ronco ²⁰, Sandro De Cecco⁹, Amanda Deisher⁵, Francesco Delli Paoli²⁰, Gianpiero Di Giovanni¹², Simone Donati ¹⁰, Mauro Donega ¹⁶, Sinead Farrington ¹⁸, Michael Feindt ⁷, Armando Fella ¹⁰, Ivan Furić⁴, Stefano Giagu⁹, Karen Gibson³, Kim Giolo¹⁴, Gavril Giurgiu³, Guillelmo Gomez-Ceballos⁸, Robert Harr²⁵, Aart Heijboer²¹, Matt Herndon²⁴, Todd Huffman¹⁹ Boris Iyutin ¹³, Matthew Jones ¹⁴, Ulrich Kerzel ⁷, Ilya Kravchenko ¹³, Joe Kroll ²¹, Tom LeCompte¹, Claudia Lecci⁷, Nuno Leonardo¹³, Donatella Lucchesi²⁰, Johannes Mülmenstädt ⁵, Petar Maksimović ¹⁵, Stephanie Menzemer ¹³, Jeffrey Miles ¹³, Michael Morello ¹⁰, Reid Mumford ¹⁵, Steve Nahn ²⁶, Rolf Oldeman ¹⁸, Manfred Paulini ³, Christoph Paus¹³, Jonatan Piedra¹², Kevin Pitts¹⁷, Giovanni Punzi¹⁰, Jonas Rademacker¹⁹, Azizur Rahaman²², Marco Rescigno⁹, Alberto Ruiz⁸, Giuseppe Salamanna 9, Aurore Savoy-Navarro 12, Fabrizio Scuri 10, Marjorie Shapiro 5, Paola Squillacioti 10, Masa Tanaka 1, Vivek Tiwari 3, Fumi Ukegawa 23, Satoru Uozumi 23, Denys Usynin²¹, Ivan Vila⁸, Barry Wicklund¹, Chun Yang²⁶

(1) Argonne National Laboratory, Argonne, Illinois 60439

(2) Brandeis University, Waltham, Massachusetts 02254

(3) Carnegie Mellon University, Pittsburgh, PA 15213

(4) Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637

(5) Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720

- (6) Glasgow University, Glasgow G12 8QQ, United Kingdom
- (7) Institut f
 ür Experimentelle Kernphysik, Universit
 ät Karlsruhe, 76128 Karlsruhe,

Germany

(8) Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain (9) Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1,University di Roma "La Sapienza," I-00185 Roma, Italy

0

Flavor Oscillations

Coupled oscillators

coupling induces splitting in energy levels (not only in QM)

the red and blue oscillator
eigen-frequencies are no longe
eigen-frequency of the system
two different eigenfrequencies, split
by small value

 size of splitting proportional to the amount of coupling between red and blue

•oscillation (envelope) between pure blue and pure red

oscillation pattern is made up of two fundamental frequencies:

Oscillation probability as function of time

Decay time t (ps)

Decay time t (ps)

Decay rate dN/dt

nb: neutral meson mixing first predicted in Kaons (1955 Gell-Man & Pais) observed Brookhaven 1956

Motivation

New physics is constrained by testing prediction of SM... in particular: test unitarity of the CKM matrix

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ud} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

pretty well known not wel known and interesting
To get at Vtd: measure Δm_d (Bd oscillations)
$$\Delta m_q = \frac{G_F^2}{6\pi^2} m_{B_q} m_t^2 F(m_t^2/m_W^2) \left(f_{B_q}^2 B_{B_q} \eta_{QCD} |V_{tb}^* V_{tq}|^2 \right)$$

hard to calculate (lattice QCD). uncertainty: 11%

If we measure Dms, we can form the ratio which allows for much more accurate measurement of V_{ts}/V_{td}

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s} f_{B_s}^2 B_{B_s}}{m_{B_d} f_{B_d}^2 B_{B_d}} \left| \frac{V_{ts}}{V_{td}} \right|^2 = 1.21 \pm 0.02 \quad \left| \frac{V_{ts}}{V_{td}} \right|^2$$

Motivation

Plot Combines many different measurements to constrain ρ and η .

Current limit on Δm_s is already helping to measure CKM matrix...

Check that all measurements are consistent: i.e. that $CKM_{-0.5}$ matrix is unitary.

if not...

Motivation: new physics

New particles that can show up in the box diagram will influence the mixing frequency.

 Δm_s is sensitive to new physics

What we know already

Amplitude scan: fix Δm_s and measure the amplitude of the corresponding frequency component (Fourier)

The Tevatron

The CDF detector

The CDF detector

Outline of the measurement

Need to:

- 1) Collect a lot of Bs decays
- 2) measure the flavor of Bs at production
- 3) measure the proper decay time of Bs

```
Trigger/reconstruction
'flavor tagging'
measure L<sub>xy</sub>
```

1) Getting the signals

The signals we are looking for

"Semileptonic"

Bs Momentum is measured Bs mass used for good S/N Small branching ratio: low yield Missing momentum (v) Need to rely on Ds mass Large branching ratio: low yield

$$\begin{array}{l} D^-_s \rightarrow \phi \pi^-, \ \phi \rightarrow K^+ K^-; \\ D^-_s \rightarrow K^{*0} K^-, \ K^{*0} \rightarrow K^+ \pi^-; \\ D^-_s \rightarrow \pi^+ \pi^- \pi^-. \end{array}$$

A typical B event at a hadron collider

Hadronic signals

Semi-leptonic signals

2) Proper time reconstruction

Proper time reconstruction

Two sources of uncertainty:

- Lxy is biased because of the SVT trigger
- contributions from primary and secondary vertex
 - improved recently by using EBE primary
- P_τ
 Uncertainty on P_τ only an issue for semi-leptonic
 - Determine $K \equiv P_{T}(I+D)/P_{T}(B)$ from MC

۵L xv

Proper time reconstruction

Tigger (and selection cuts) bias the proper decay time distribution To test: measure Bs lifetime, including efficiency in the fit

combined hadronic lifetime agrees with world average

Measuring the proper time resolution

Effect of non-zero ct error asymmetry: attenuation of the oscillation

•No problem if we observe mixing:

- we know the true Asymmetry=1
- •But if we do not see mixing: *must* know σ_{ct}
 - need to correct for effect of $\sigma_{_{ct}}$ to set limit on A

How to measure σ_{ct} ?

Measuring the proper time resolution

Cannot measure the ct resolution directly on data. Solution: reconstruct events that look like a B but are known to come from the PV..

<ct> must be zero; compare error with expected error from the fit....

And study dependence on kinematic variables, isolation, χ^2 of fit etc..

3) Flavor tagging

Flavour tagging

- We need to know the flavor of the Bs at production.
 - Opposite side tag:
 - Iook at the decay products of the other b quark in the event:
 - Leptons
 - charge of the b-'jet' --- combination of NNs
 - the two b quarks fragment independently: can calibrate opposite side taggers with B_d

Same side tag: look at particles produced in B meson formation (K in case of Bs)

- need to rely on MC to calibrate this tagger
- potentially very powerful, but not yet used

Flavour tagging: dilution

Tagger calibration: B_d mixing

For setting limit, we must know the dilution

Datasets with high tagging efficiency

Default: trigger or decay products of the reconstructed B and hope for a tag

'New' idea: trigger on tagged events

•muon (tag) + two displaced tracks (B-decay)

Di-lepton trigger

one lepton from semi-leptonic decay one for OST
trigger already existed (used for SUSY searches)

• modest yield, but very high εD^2 :

•Adding this data in next round of analysis.

 ϵD^2 from lepton taggers measured on B⁰ and B⁺ in this sample: 4.5% !

(compare with 1.5 for other samples)

e/u

Nov 15/05, Philadelphia, Hep Seminar

 Use de/dx in COT and time of flight detector to identify which particles (π,p.k,e) are produced around B mesons...

- •Extra K's around B_s mesons!
- Gives handle for MC tuning

Combining it all

Before fitting doing Dm_s: test whole procedure by on B_d mixing

Amplitde scan: B_d

Current Result

Semileptonic modes

```
Sensitivity: 10.4 ps^{-1}
95% CL Limit: 6.7 ps^{-1}
```

Hadronic modes

Sensitivity: 9.8 ps^{-1} 95% CL Limit: 0.0 ps^{-1}

Current Result: combined

Sensitivity: 13.0 ps^{-1} 95% CL Limit: 8.6 ps^{-1}

impact on world average

Sensitivity: 19.6 ps^{-1} 95% CL Limit: 16.6 ps^{-1}

Current Result: systematics

Systematic errors are small compared to statistical errors and will also decrease as more data comes in.

The Future

Summary

•B_s oscillations are know to occur: frequency= Δm_s unknown •Will measure $|V_{ts}|^2/|V_{td}|^2$ (when combined Δm_d) •Sensitive to new physics (heavy particles in box)

•Experimentally challenging... need

- Bs mesons: Tevatron is the only place
- B-physics trigger: CDF has displaced track trigger
- Good lifetime resolution to resolve fast oscillations: SVX (L00)
- Flavor tagging (will exploit time-of-flight detector for SSKT)

•Current CDF result: $\Delta m_s > 8.6 \text{ ps}^{-1}$ (95% CL), sensitivity 13 ps⁻¹

•Already significant impact on world average

- •Much more to come! some of it very soon...
 - will dominate world average soon
 - possibility to measure Δm_s within a few years

Sensitivity Projections Combined 5σ observation

CDF Projections :: Combined Analyses

Aart Heijboer

Triggering on B decays

Level 1: (396 ns)

- Reconstruct COT tracks (!) on dedicated hardware: XFT
- require pair of tracks

Level 2 (20 μs):
Add Silicon information to XFT tracks.. look for:
two displaced tracks

•or lepton+displaced track

Proper time reconstruction

In principle, measing the proper time at decay is easy

$$ct = L_{xy} \frac{m_B}{p_T}$$

Three problems...

- Lxy distribution is biased by the trigger
- P_{τ} is not measured accurately in semi-leptonic modes
- How do we measure our ct resolution?

Aart Heijboer