Measurement of Relative Fragmentation Fractions of B Hadrons at CDF

> Karen Gibson Carnegie Mellon University HEP Seminar May 9, 2006

Recent B Physics Results from CDF

B fragmentation fractions

Outline

DB fragmentation overview Semileptonic signal reconstruction Semileptonic sample composition Reconstruction efficiencies **□**Fit for fragmentation fractions Fragmentation fraction results Outlook

Outline

B fragmentation overview

- Semileptonic signal reconstruction
- Semileptonic sample composition
- Reconstruction efficiencies
- □ Fit for fragmentation fractions
- Fragmentation fraction results
- Outlook

B Physics at Tevatron

Reconstruct all flavors of B hadrons

- $\blacksquare B_d^0, B_u^+, B_s^0, B_c^+, \Lambda_b^0$
- Contrast to B factories, Y(4S) [Y(5S)]

 $\Box B_{d}^{0}, B_{u}^{+} [B_{s}^{0}]$

Large dataset of B hadrons

~ 1 fb⁻¹ data available for B measurements

Very large production cross-section makes Tevatron competitive w/B factories

Make exciting new measurements

 \square B_s mixing (1 fb⁻¹)

- Refine older measurements
 - □ B fragmentation fractions (360 pb⁻¹)

B Fragmentation

Probability of b quark hadronizing with an antiquark or a di-quark pair

 $\blacksquare f_q \equiv \mathscr{B}(b \to B_q)$

Many models for heavy flavor fragmentation

Petersen, Lund, …

B fragmentation fractions inherently empirical quantity

■ Include B^{*}, B^{**} in fragmentation fractions

Why Fragmentation Fractions?

■ Search for $B_s \rightarrow \mu^+ \mu^-$ ■ $\mathscr{B}(B_s \rightarrow \mu^+ \mu^-) = f_u/f_s \times \mathscr{B}(B^+ \rightarrow J/\psi K^+) \times ...$

Improvement in limit @95% CL if

- **\square** Reduce uncertainty on f_s/f_d
- \Box f_s/f_d at Tevatron is higher than world average...

e.g., Dermisek et al., hep-ph/0507233 dark matter and S0(10) with soft SUSY breaking, other experimental constraints

Excluded at 95% CL! (CDF Limit)

Contour of equal $Br(B_s \rightarrow \mu^+ \mu^-)$

Allowed by dark matter constraints

Fragmentation Fraction Status

B Fragmentation Intrigue

■Other ~2.5 sigma discrepancies observed between LEP and CDF Run I

- $\blacksquare \overline{\chi} = f_d \chi_d + f_s \chi_s$
 - \square 0.118 ± 0.005 average measured at LEP
 - □ 0.152 ± 0.013 measured at CDF Run I (110 pb-1)

The discrepancies could be due to

- **D** New physics present in $p\overline{p}$ collisions
- \blacksquare **OR** f_s is simply higher at Tevatron
- **OR** just fluctuations, etc...

<u>Note</u>: PDG 2004 calculates $f_s/(f_u+f_d) = 0.134 \pm 0.014$ when $\overline{\chi}$ constraints are included

B Frag. Fractions in Run II

Use method similar to Run I measurement

- Reconstruct five semileptonic B signals $\Box \ell^- D^+$, $\ell^- D^0$, $\ell^- D^{*+}(\rightarrow D^0 \pi^+)$, $\ell^- D_s^+$, $\ell^- \Lambda_c^+$ ($\ell = e, \mu$)
- Relate to parent B hadrons
 - $\Box \overline{B}_{d}^{0}, B_{u}^{-}, \overline{B}_{s}^{0}, \Lambda_{b}^{0}$

Cross-talk from excited charm states makes life complicated!

Outline

■ B fragmentation overview Semileptonic signal reconstruction Semileptonic sample composition Reconstruction efficiencies □ Fit for fragmentation fractions Fragmentation fraction results Outlook

CDF Detector

- Tracking chamber
 Eight layers of silicon
 Precision detection of displaced tracks
 Drift Chamber
 - □dE/dx
- Lepton Identification
 - Electromagnetic Calorimeter
 - Hadronic Calorimeter
 - Muon chambers

SVT

- Hardware trigger
- Can trigger on displaced tracks in Run II
 - Allows for accumulation of large sample of B events
 - Uses information from
 - Drift chamber (XFT)
 - Silicon detector

Semileptonic B Trigger

□ New *ℓ*+SVT trigger in Run II

- $p_T(\ell) > 4 \text{ GeV/c}$
- p_T(SVT) > 2 GeV/c
- 120 µm < d₀(SVT) < 1 mm
- m(*l*,SVT) < 5 GeV/c²
- Run I trigger
 - p_T(ℓ) > 8 GeV/c

ł+Charm Reconstruction

□ Reconstruct 5 charm signals

$$\blacksquare D^+ \to K^- \pi^+ \pi^+$$

$$D^{0} \rightarrow K \pi'$$

$$D^{*^{+}} \rightarrow D^{0}\pi$$

$$\square D_s^+ \rightarrow \Phi \pi^+, \ \Phi \rightarrow K^- K^+$$

- Require one of charm tracks be SVT track
- Require a trigger lepton in vicinity of charm hadron
- Vertex charm hadron with trigger lepton

Signal Selection

Cut on quantities which distinguish B decays

■ $ct^*(\ell D) = L_{xy}(P.V. \rightarrow \ell D) \cdot m(B)/p_T(\ell D) > 200 \ \mu m$

Inconsistent with being prompt

■
$$L_{xy}(P.V. \rightarrow D)$$

■ p_T(tracks)

Probability of vertex fits to bottom and charm hadrons

Reflection Backgrounds

- Combinatorial backgrounds present beneath all signals
- Significant reflection backgrounds present in two signals
 - D⁺ signal contaminated by $D_s^+ \rightarrow K^+ K^- \pi^+$
 - Include reflection in fit to signal
 - Λ_c^+ signal contaminated by $D^+ \rightarrow K^- \pi^+ \pi^+$, $D_s^+ \rightarrow K^+ K^- \pi^+$
 - Use dE/dx cut on proton in $\Lambda_c^{+} \rightarrow pK^{-}\pi^{+}$

D_s^+ Reflection in D⁺ Signal

- Use MC to determine reflection shape
- □ Fit number of $D_s^+ \rightarrow \phi \pi^+$ observed in data
- □ Scale efficiency of $D_s^+ \rightarrow \phi \pi^+$ to generic $D_s^+ \rightarrow K^- K^+ \pi^+$

 $R_{\phi\pi} = 0.246 \pm 0.016$

■ Measure $N_{D_s} = 13.4 \pm 0.8 \%$ relative to D⁺ yield in m ∈ [1.78,1.95]

dE/dx Likelihood Cut

 $\square \mathcal{LR} = \mathcal{L}(p) / [\mathcal{L}(p) + \mathcal{L}(K) + \mathcal{L}(\pi) + \mathcal{L}(e) + \mathcal{L}(\mu)]$ $\blacksquare \mathcal{L}(i) \text{ constructed from } Z = Log[(dE/dx)_{meas}/(dE/dx)_{pred}]$

µ+Charm Meson Signals

$\mu + \Lambda_c$ Signal

Semileptonic B Yields

Signature	Yield	_
$\ell^- D^0$	46,848 ± 275	
$\ell^- D^{*+}$	$8,490 \pm 95$	
$\ell^- D^+$	$31,015 \pm 262$	360 pb ⁻¹
$\ell^- D_s^+$	$3,081 \pm 95$	
$\ell^- \Lambda_c^+$	4,739 ± 168	J

Run I yields used in fragmentation fraction measurement
 N(e⁻D_s⁺) = 59 ± 10
 N(e⁻Λ_c⁺) = 79 ± 17
 More than 50 times the yield in Run II compared to Run I!

Outline

■ B fragmentation overview Semileptonic signal reconstruction Semileptonic sample composition Reconstruction efficiencies □ Fit for fragmentation fractions Fragmentation fraction results Outlook

Sample Composition

- Need to disentangle parent B hadrons from lepton-charm signals
 - Missing neutrino prevents fully reconstructing decay at CDF
 - Allows excited charm states to contribute to reconstructed charm signals
- Cross-talk between signals
 - $\blacksquare \overline{B}^0$, B^- , \overline{B}_s^0 contribute to $\ell^- D^+$, $\ell^- D^0$, $\ell^- D^{*+}$, $\ell^- D_s^{++}$
 - $\blacksquare \Lambda_b^0$ contributes to $\ell^- \Lambda_c^+$
 - $\square \text{ Meson} \leftrightarrow \text{baryon cross talk small}$

Simple Sample Composition

□ Simple parameterization of semileptonic B⁰, B⁺ decays into D⁰ and D⁻

$ar{B}^0$	<i>B</i> ⁻	$ar{B}^0_s$	Λ_b^0
$\ell \nu D^+$	$\ell \nu D^0$	$\ell \nu D_s^+$	$\ell \nu \Lambda_c^+$
$\ell \nu D^{*+}$	$\ell u D^{*0}$	$\ell u D_s^{*+}$	$\ell u \Lambda_c (2593)^+$
$ ightarrow D^0 \pi^+ \ D^+ \pi^0 / \gamma$	$ ightarrow D^0 \pi^0 / \gamma$	$ ightarrow D_s^+ \gamma$	$ \begin{array}{c} \rightarrow \Sigma_c (2455)^{++} \pi^- \\ \hookrightarrow \Lambda_c^+ \pi^+ \\ \rightarrow \Sigma_c (2455)^0 \pi^+ \end{array} $
$\ell u D_1^+ ightarrow D^{*0} \pi^+$	$\ell u D_1^0 ightarrow D^{st 0} \pi^0$	$\ell u D_{s1}^+(2460) \to D_{s0}^{*+} \pi^0$	$ \stackrel{\hookrightarrow}{\to} \Lambda_c^+ \pi^- \\ \to \Sigma_c (2455)^+ \pi^0 $
$ \stackrel{\hookrightarrow}{\to} D^0 \pi^0 / \gamma \rightarrow D^{*+} \pi^0 $	$ \stackrel{\hookrightarrow}{\to} D^0 \pi^0 / \gamma \\ \stackrel{\to}{\to} D^{*+} \pi^- $	$\begin{array}{c} \hookrightarrow D_s^+ \pi^0 \\ \to D_s^+ \gamma \end{array}$	$\hookrightarrow \Lambda_c^+ \pi^0 \ o \Lambda_c^+ \pi^+ \pi^-$
$\hookrightarrow D^0 \pi^+ \ D^+ \pi^0 / \gamma$	$\stackrel{\hookrightarrow}{\longrightarrow} D^0 \pi^+ \ D^+ \pi^0 / \gamma$		
$\ell \nu D_0^{*+} \rightarrow D^0 \pi^+$	$\ell \nu D_0^{*0} \longrightarrow D^0 \pi^0$	$\ell \nu D_{s0}^{*+}(2317) \\ \rightarrow D^+ \pi^0$	$\ell \nu \Lambda_c (2625)^+ \rightarrow \Lambda^+ \pi^+ \pi^-$
$D^+\pi^0$	$D^+\pi^-$, 23, 11	
$\ell u D_1^{'+} ightarrow D^{*0} \pi^+$	$\ell u D_1^{'0} ightarrow D^{*0} \pi^0$	$\ell u D_{s1}^{'+}(2535) \to D^{*+}K^0$	$\ell \nu \Sigma_c (2455)^{++} \pi^{-})$
$ \stackrel{\longrightarrow}{\longrightarrow} D^0 \pi^0 / \gamma $ $ \stackrel{\longrightarrow}{\longrightarrow} D^{*+} \pi^0 $	$ \stackrel{\longrightarrow}{\longrightarrow} D^0 \pi^0 / \gamma $ $ \stackrel{\longrightarrow}{\rightarrow} D^{*+} \pi^- $	$\hookrightarrow D^0 \pi^+ D^+ \pi^0 / \gamma$	$\rightarrow \Lambda_c^+ \pi^+$
$ \stackrel{D^0\pi^+}{\hookrightarrow} \frac{D^0\pi^+}{D^+\pi^0/\gamma} $	$ \stackrel{\cdots}{\hookrightarrow} \frac{D^0 \pi^+}{D^+ \pi^0 / \gamma} $	$ \rightarrow D^{*0} \overline{K^+} \qquad $	$\ell u \Sigma_c (2455)^0 \pi^+ \ ightarrow \Lambda_c^+ \pi^-$
$\ell \nu D_2^{*+}$ $\rightarrow D^{*0} \pi^+$	$\ell \nu D_2^{*0} \longrightarrow D^{*0} \pi^0$	$\ell \nu D_{s2}^{'+}(2573)$ $\rightarrow D^{*+} K^{0}$	$\ell \nu \Sigma_c (2455)^+ \pi^0$
$ \xrightarrow{\rightarrow} D^{-n} \pi^{0} / \gamma $ $ \xrightarrow{\rightarrow} D^{*+} \pi^{0} $	$ \xrightarrow{\rightarrow} D^{-\pi} $ $ \xrightarrow{\rightarrow} D^{0} \pi^{0} / \gamma $ $ \xrightarrow{\rightarrow} D^{*+} \pi^{-} $	$ \xrightarrow{\rightarrow} D^{-} R^{+} \\ \xrightarrow{\rightarrow} D^{0} \pi^{+} \\ D^{+} \pi^{0} / 2 $	$- \mathcal{H}_c $
$ \stackrel{i}{\hookrightarrow} D^0 \pi^+ $	$\hookrightarrow D^0 \pi^+$	$\rightarrow D^{*0}K^+$	(A + + - (ND))
$\rightarrow D^0 \pi^0$	$\rightarrow D^0 \pi^0$	$ \rightarrow D^{*}\pi^{*}/\gamma $ $ \rightarrow D^{+}K^{0} $	$\ell \nu \Lambda_c^{\prime} \pi^{\prime} \pi^{\prime} (\mathrm{NR})$
$\rightarrow D^{+}\pi^{-}$	$\rightarrow D^{+}\pi^{-}$	$\rightarrow D^0 K^+$	$\ell \nu \Lambda_c^+ \pi^0 \pi^0 (\mathrm{NR})$
$\ell u D^{*+} \pi^0 (\mathrm{NR}) onumber \ o D^0 \pi^+$	$\ell \nu D^{*+} \pi^{-} (\mathrm{NR})$ $\rightarrow D^{0} \pi^{+}$	$\ell u D_s^{*+} \pi^0(\text{NR}) \to D_s^+ \gamma$	
$D^+\pi^0/\gamma$	$D^+\pi^0/\gamma$	$\ell_{\rm u} D^+ \pi^0 (\rm NB)$	
$\ell \nu D^{*0} \pi^+ (\mathrm{NR})$ $\rightarrow D^0 \pi^0 / \gamma$	$\ell u D^{*0} \pi^0 (\mathrm{NR}) \to D^0 \pi^0 / \gamma$	$\mathcal{U}\mathcal{D}_{s}$ \mathcal{K} (IVIL)	
$\ell \nu D^+ \pi^0 (\text{NR})$	$\ell \nu D^+ \pi^- (NR)$		
$\ell \nu D^0 \pi^+ (NR)$	$\ell \nu D^0 \pi^0 (\text{NR})$		
$D^{(*)}ar{D}^{(*)}K \ D^{(*)+}D^{(*)-}$	$D^{(*)}ar{D}^{(*)}K$	$D^{(*)}ar{D}^{(*)}K$	
$D^{(*)}_s D^{(*)} X$	$D_{s}^{(st)} D^{(st)} X$	$D_{s}^{(*)}D^{(*)}X$	$ au^- u\Lambda_c^+$
$\tau^{-}\nu D^{+(*),(**)}$	$\tau^{-}\nu D^{0(*),(**)}$	$D_{s}^{(\tau)}D_{s}^{(\tau)}X$ $ au^{-} u D_{s}^{+(*),(**)}$	$ au^{-} u \Lambda_{c} (2593)^{+} \ au^{-} u \Lambda_{c} (2625)^{+}$

Full Sample Composition

Consider all significant decays to semileptonic charm signals, including sequential semileptonic decays.

"Physics backgrounds" e.g. $B^0 \rightarrow D^+(\rightarrow K^-\pi^+\pi^+)D^-(\rightarrow \ell^-X)$ **D** Simple example w/only ground state $N(\ell^+D^-)$

$$= \mathsf{N}(\mathsf{B}^{0}) \times \mathscr{B}(\mathsf{B}^{0} \rightarrow \ell^{+} \mathsf{v}\mathsf{D}^{-}) \times \mathscr{B}(\mathsf{D}^{-} \rightarrow \mathsf{K}^{+} \pi^{-} \pi^{-}) \\ \times \varepsilon(\mathsf{B}^{0} \rightarrow \ell^{+} \mathsf{v}\mathsf{D}^{-}, \mathsf{D}^{-} \rightarrow \mathsf{K}^{+} \pi^{-} \pi^{-})$$

$$\underbrace{\mathsf{N}(\mathsf{b})}_{\mathsf{C}} \mathsf{f}_{\mathsf{d}} \times \tau(\mathsf{B}^{0}) \times \Gamma(\mathsf{B}^{0} \to \ell^{+} \vee \mathsf{D}^{-}) \times \mathscr{B}(\mathsf{D}^{-} \to \mathsf{K}^{+} \pi^{-} \pi^{-}) \\ \times \varepsilon(\mathsf{B}^{0} \to \ell^{+} \vee \mathsf{D}^{-}, \mathsf{D}^{-} \to \mathsf{K}^{+} \pi^{-} \pi^{-})$$

Number of b quarks

Extend this to all mesons

Generalize notation

■ N(
$$\ell D_i$$
)= $\Sigma_{j=d,u,s}$ N(b) × f_j × $\tau(B_j)$ × $\Sigma_k \Gamma_k$ × $\mathscr{B}_{ijk}(D_{jk} \rightarrow D_i)$ × ϵ_{ijk}
□ $D_i = D^-, D^0, D^{*-}$, and D_s
□ $\Gamma_k = \Gamma, \Gamma^*, \Gamma^{**}$

Branching Ratios

■ Need model for semileptonic decays ■ $\Gamma(B \rightarrow \ell_V D^{(*,**)}) = 1/\tau(B) \times \mathscr{B}(B \rightarrow \ell_V D^{(*,**)})$

■ Use spectator model for meson decays □ $\Gamma(B^0 \rightarrow \ell \nu D^-) = \Gamma(B^+ \rightarrow \ell \nu D^0) = \Gamma(B_s \rightarrow \ell \nu D_s) \equiv \Gamma$ □ $\Gamma(B^0 \rightarrow \ell \nu D^{*-}) = \Gamma(B^+ \rightarrow \ell \nu D^{*0}) = \Gamma(B_s \rightarrow \ell \nu D_s^{**}) \equiv \Gamma^*$ □ $\Gamma(B^0 \rightarrow \ell \nu D^{**-}) = \Gamma(B^+ \rightarrow \ell \nu D^{**0}) = \Gamma(B_s \rightarrow \ell \nu D_s^{**}) \equiv \Gamma^{**}$

■ Assume $\Gamma + \Gamma^* + \Gamma^{**} = \Gamma_{sl}(B \rightarrow l_V X)$

- □Use fixed sample composition for $\Lambda_b \rightarrow \ell_V \Lambda_c X$ □Use PDG 2004 for known branching ratios
 - Use theoretical predictions and symmetry principles for unmeasured BR

Outline

■ B fragmentation overview Semileptonic signal reconstruction Semileptonic sample composition Reconstruction efficiencies □ Fit for fragmentation fractions Fragmentation fraction results Outlook

Acceptances and Efficiencies

- Need relative acceptances and efficiencies of individual *l*+charm decays
 - Fit to relative fractions
- □Use MC to determine acceptances
 - Detector geometry
 - Kinematic differences between lepton-charm signals
- Use data to determine remaining efficiencies which are different between charm channels

Monte Carlo

Monte Carlo is good for most kinematic differences between lepton-charm signals

• ct(D), $p_T(tracks)$, etc...

- Generate single B hadron directly
 - Decay with EvtGen package
 - Use input p_T spectrum measured from data
 - □ Inclusive $p_T(b \rightarrow J/\psi X)$ spectrum
 - Separate set of Monte Carlo generated for each decay in sample composition
 - Separate sets of Monte Carlo for e, μ
- Validate with inclusive Monte Carlo samples by comparing data and Monte Carlo

■ e.g. B→ℓvDX

Baryon Decays

Need to implement physical baryon decay model $\Box T = (G_F / \sqrt{2}) V_{O_G} \bar{u}_{\ell} \gamma_{\mu} (1 - \gamma_5) v_{\nu} < \Lambda_G |J^{\mu}| \Lambda_O >$ V-A current $\blacksquare 1/2^+ \rightarrow 1/2^+ \quad (\Lambda_{\rm b}{}^0 \rightarrow \Lambda_{\rm c}{}^+)$ $\Box < \Lambda_{c}^{+} |V^{\mu}| \Lambda_{b}^{0} > = \bar{u}(p',s') [F_{1}(q^{2})\gamma^{\mu} + F_{2}(q^{2})p^{\mu}/m_{\Lambda b}]$ $+F_{3}(q^{2})p'^{\mu}/m_{\Lambda c}]u(p,s)$ $\Box < \Lambda_c^+ |A^{\mu}| \Lambda_b^0 > = \bar{u}(p',s') [G_1(q^2)\gamma^{\mu} + G_2(q^2)p^{\mu}/m_{\Lambda b}]$ + $G_3(q^2)p'^{\mu}/m_{\Lambda_c}]\gamma^5 u(p,s)$ $\blacksquare 1/2^+ \rightarrow 3/2^- (\Lambda_b^0 \rightarrow \Lambda_c^+ (2625))$ $\Box < \Lambda_{c}^{+}(2625) |V^{\mu}| \Lambda_{b}^{0} > = \bar{u}_{\alpha}(p',s') [p^{\alpha}/m_{\Lambda b}(F_{1}\gamma^{\mu} + F_{2}p^{\mu}/m_{\Lambda b} + F_{3}p'^{\mu}/m_{\Lambda c}) + F_{4}g^{\alpha\mu}] u(p,s)$ $\Box < \Lambda_{c}^{+}(26\bar{2}5)|A^{\mu}|\Lambda_{b}^{0} > = \bar{u}_{\alpha}(p',s')[p^{\alpha}/m_{\Lambda b}(G_{1}\gamma^{\mu} + G_{2}p^{\mu}/m_{\Lambda b} + G_{3}p'^{\mu}/m_{\Lambda c}) + G_{4}g^{\alpha\mu}]\gamma^{5}u(p,s)$ $\Box u_{\alpha}(p',s') = u(p',s')\varepsilon_{\alpha}$ • $u_{\alpha}(p',s')p'^{\alpha}=u(p',s')\varepsilon_{\alpha}p'^{\alpha}=0$ • $\varepsilon_{\alpha}(0, \underline{e}(M))$ in rest frame (of $\Lambda_{c}(2625))$ • $e(\pm 1) = 1/\sqrt{2}(-/+1,-i,0)$ • e(0)=(0,0,1)

 Λ_{c} Form Factors

Form factor predictions from Pervin, Capstick, and Roberts et al. only made for $l_V \Lambda_c^{(*,**)}$ final states

New Baryon Decay Model

- New baryon decay model implemented according to predictions by Pervin, Capstick, and Roberts
 - Constituent quark model
 - Phys. Rev. C72,035201 (2005)

Reconstruction Efficiencies

Measure some efficiencies from data

Single track efficiency

 $\square D^{0} \longrightarrow K^{-}\pi^{+} \text{ vs. } D^{+} \longrightarrow K^{-}\pi^{+}\pi^{+}$

- **•** XFT trigger efficiencies for p, K, π
- dE/dx efficiency for cut on proton

 $\square \Lambda_c^{+} \rightarrow pK^{-}\pi^{+}$

Use to re-weight Monte Carlo for total efficiency

Single Track Efficiency

- Efficiency to add an additional track depends on environment in detector
 - Monte Carlo only generates B hadron
- **D**Reconstruct $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$
 - Measure efficiency relative to $D^0 \rightarrow K^- \pi^+$ in data and Monte Carlo
 - Efficiency to add two additional tracks

Measure

XFT Efficiencies

Differences in tracking p, K, π in drift chamber

- Differences in efficiencies between reconstructed charm states
- Only applies to SVT trigger track
- Varying drift chamber performance not optimally described by Monte Carlo
- Again measure from data
 - Re-weight Monte Carlo
 - □ Measure in separate run ranges

XFT Efficiencies

Comparison of Data and MC

B Meson p_T Spectra

Choice of p_T spectrum used is important for determination of efficiencies
 Use inclusive p_T(b→J/ψX) spectrum measured in Run II for meson signals
 Good agreement with data

$\Lambda_b p_T$ Spectra

 \Box Inclusive $p_T(b \rightarrow J/\psi X)$ spectrum does not describe the $\ell \Lambda_c$ data

Observe softer spectrum in data than the MC

 \Box Tune the $\ell \Lambda_c$ Monte Carlo spectrum to match the $\ell \Lambda_c$ data 41

Outline

■ B fragmentation overview Semileptonic signal reconstruction Semileptonic sample composition Reconstruction efficiencies Fit for fragmentation fractions Fragmentation fraction results Outlook

General Idea of Fit

Express each term of sample composition in terms of B⁰

Fit for relative production

$$\begin{split} \mathsf{N}_{\mathsf{pred}}(\ell\mathsf{D}_{\mathsf{i}}) &= \mathsf{N}(\mathsf{B}^{0}) \ \Sigma_{\mathsf{j}=\mathsf{d},\mathsf{u},\mathsf{s}} \ \mathsf{f}_{\mathsf{j}}/\mathsf{f}_{\mathsf{d}} \ \times \tau(\mathsf{B}_{\mathsf{j}}) \\ &\times \Sigma_{\mathsf{k}} \Gamma_{\mathsf{k}} \times \mathscr{B}_{\mathsf{i}\mathsf{j}\mathsf{k}}(\mathsf{D}_{\mathsf{j}\mathsf{k}} \rightarrow \mathsf{D}_{\mathsf{i}}) \times \varepsilon_{\mathsf{i}\mathsf{j}\mathsf{k}} \\ \mathsf{N}_{\mathsf{pred}}(\ell\Lambda_{\mathsf{c}}) &= \mathsf{N}(\mathsf{B}^{0}) \ \times \ [\mathsf{f}_{\Lambda_{\mathsf{b}}}/(\mathsf{f}_{\mathsf{u}} + \mathsf{f}_{\mathsf{d}})](1 + \mathsf{f}_{\mathsf{u}}/\mathsf{f}_{\mathsf{d}}) \\ &\times [(\Sigma_{\mathsf{k}}\mathscr{B}_{\mathsf{k}}(\Lambda_{\mathsf{b}} \rightarrow \ell_{\mathsf{V}}\Lambda_{\mathsf{c},\mathsf{k}} \rightarrow \Lambda_{\mathsf{c}})) \times \varepsilon_{\mathsf{k}} \end{split}$$

 $\Box \chi^2$ fit to 5 lepton charm channels

$$f_{u}/f_{d}, f_{s}/(f_{u}+f_{d}), f_{\Lambda_{b}}/(f_{u}+f_{d})$$

$$f_{s}/f_{d} = [f_{s}/(f_{u}+f_{d})] \times (1+f_{u}/f_{d})$$

■ N(B⁰)

□Parameter for fit, not physical number of B⁰'s

Implementation of Fit

□Fit looks like $\chi^2 = \sum_{i=1..5} (N_{\text{pred}}(\ell D_i) - N_{\text{meas}}(\ell D_i))^2 / \sigma_{\text{meas},i}^2$ + $(\Gamma - \Gamma_{PDG})^2 / \sigma_{\Gamma_{PDG}}^2$ + $(\Gamma^* - \Gamma^*_{PDG})^2 / \sigma_{\Gamma^*_{PDG}}^2$ + $(\Gamma^{**} - \Gamma^{**}_{PDG})^2 / \sigma_{\Gamma^{**}_{PDG}}^2$ Gaussian constraints for Γ , Γ^* , Γ^{**} Test with high statistics toy Monte Carlo

Fit Results

Fit Parameter	e+SVT	$\mu + \text{SVT}$		
f_u/f_d	$1.044{\pm}0.028$	$1.062{\pm}0.024$		
$f_s/(f_u + f_d)$	$0.162{\pm}0.008$	$0.158{\pm}0.006$		
$f_{\Lambda_b}/(f_u+f_d)$	$0.292{\pm}0.020$	$0.275{\pm}0.015$		
$\Gamma [\mathrm{ps}^{-1}]$	$0.0157 {\pm} 0.0007$	$0.0154{\pm}0.0007$		
$\Gamma^* [\mathrm{ps}^{-1}]$	$0.0327{\pm}0.0014$	$0.0331{\pm}0.0013$		
$\Gamma^{**} [\mathrm{ps}^{-1}]$	$0.0145{\pm}0.0010$	$0.0146{\pm}0.0010$		
$N(\bar{B}^0) \ (10^9)$	$2.02{\pm}0.07$	$2.93{\pm}0.10$		

□ Statistical errors ONLY

 $\frac{2004 \text{ PDG}}{\text{w/o } \overline{\chi} \text{ constraint:}}$ f_s/(f_u+f_d) = 0.109 ± 0.026 f_{Ab}/(f_u+f_d) = 0.133 ± 0.023

with all constraints: $f_s/(f_u+f_d) = 0.134 \pm 0.014$ $f_{\Lambda_b}/(f_u+f_d) = 0.125 \pm 0.021$

 f_{Λ_b} higher than previously measured!

\Box Fit e+SVT and μ +SVT separately

- Cancel lepton ID efficiencies
- Statistically independent samples

□ Results are consistent- very nice!

Results are consistent if f_u/f_d fixed to unity

Outline

■ B fragmentation overview Semileptonic signal reconstruction Semileptonic sample composition Reconstruction efficiencies □ Fit for fragmentation fractions Fragmentation fraction results Outlook

Systematic Uncertainties

- Measurement is dominated by systematic uncertainties
 - Largest come from knowledge of branching ratios
 - □ Particularly ground state charm BRs!!!
 - Other source of systematic uncertainty arise from determination of efficiencies, counting yields, and false lepton backgrounds
 - \blacksquare Knowledge of the $\mathsf{B}_{s}{}^{0}$ and $\Lambda_{b}{}^{0}$ p_{T} spectrum
 - Residual false lepton contamination

$\Lambda_b p_T$ Spectrum Uncertainty

Vary tuned lAc spectrum to match agree with inclusive J/ψ spectrum
 Produces large uncertainty: ±0.049

Estimate conservatively

True Λ_b⁰ spectrum isn't known

Systematic Uncertainties

Systematic	f_u/f_d	$f_s/(f_u+f_d)$	$f_{\Lambda_b}/(f_u+f_d)$	
Fake Leptons	-0.039	-0.001	+0.018	
Variation of cuts	± 0.011	± 0.0003	± 0.019	
D_s reflection	+0.001	+0.00002	+0.0001	
XFT eff.	± 0.003	± 0.0004	± 0.006	
Single track	$^{\mathrm{+0.013}}_{\mathrm{-0.014}}$	± 0.002	± 0.002	
Sample comp. lifetimes	$+0.018 \\ -0.014$	± 0.006	± 0.002	
MC lifetimes	-	$+0.005 \\ -0.001$	$+0.0077 \\ -0.0136$	
MC statistics	± 0.005	± 0.0007	± 0.0006	
p_T spectra	-	± 0.008	± 0.049	
dE/dx eff.	-	<u> </u>	± 0.012	
Λ_b^0 polarization	-	-	± 0.007	
Total (eff)	$^{\mathrm{+0.025}}_{\mathrm{-0.045}}$	$^{+0.011}_{-0.010}$	$^{\mathrm +0.058}_{\mathrm -0.056}$	
$\mathcal{BR}(\Lambda^0_b \to \ell^- \nu \Lambda^+_c X)$	-	-	$+0.076 \\ -0.048$	
Λ_b^0 sample composition	-	-	± 0.045	
$\mathcal{BR}(D^{**})$	± 0.010	± 0.004	± 0.011	
"physics bkgs"	± 0.001	± 0.002	± 0.001	
$\mathcal{BR}(D^+ o K^- \pi^+ \pi^+)$	± 0.054	± 0.003	± 0.010	
${\cal BR}(D^0 o K^- \pi^+)$	± 0.020	± 0.003	± 0.003	
$\mathcal{BR}(D_s^+ \to \phi \pi^+)$	± 0.0006	$^{\mathrm +0.057}_{\mathrm -0.034}$	± 0.001	
$\mathcal{BR}(\Lambda_c^+ o pK^-\pi^+)$	-	-	$^{+0.091}_{-0.053}$	
Total (\mathcal{BR})	± 0.058	$^{+0.057}_{-0.034}$	$^{+0.128}_{-0.086}$	
Total	$^{+0.062}_{-0.074}$	$+0.058 \\ -0.035$	$+0.141 \\ -0.103$	
		^		
			\sim	
+0.062 -0.074 +0.058 -0.035 +				

+0.141 -0.103

49

p_T Threshold for Measurement

Choose to quote p_T threshold for all fragmentation fractions
 p_T(B) > 7 GeV/c determined from Monte Carlo

Final Results

e

$$\frac{f_u}{f_d} = 1.054 \pm 0.018(stat)^{+0.025}_{-0.045}(sys) \pm 0.058(\mathcal{BR})$$

$$\frac{f_s}{f_u + f_d} = 0.160 \pm 0.005(stat)^{+0.011}_{-0.010}(sys)^{+0.057}_{-0.034}(\mathcal{BR})$$

$$\frac{f_{\Lambda_b}}{f_u + f_d} = 0.281 \pm 0.012(stat)^{+0.058}_{-0.056}(sys)^{+0.128}_{-0.086}(\mathcal{BR}).$$

□ Weighted average between e+SVT and µ+SVT samples

Statistical error is very small!

Error on $f_s/(f_u+f_d)$ is dominated by PDG 2004 $\square \mathscr{B}(D_s^+ \rightarrow \varphi \pi^+) = (3.6 \pm 0.9)\%$

Sheldon Stone's estimate of CLEO-c measurement (FPCP06)

$$\Box \mathscr{B}(D_{s}^{+} \to \phi \pi^{+}) = (3.73 \pm 0.42)\%$$

Comparison with PDG

Comparisons with Other Results

53

Outline

■ B fragmentation overview Semileptonic signal reconstruction Semileptonic sample composition Reconstruction efficiencies □ Fit for fragmentation fractions Fragmentation fraction results Outlook

Prospects

- New fragmentation fraction measurement at CDF will be improved with better measurement of charm branching ratios
- Measurements of B p_T spectra at CDF in fully reconstructed modes limit uncertainty on efficiencies
- □Improved statistics are always helpful!!

Backup Slides

Wrong Sign Lepton-Charm

57

Fit Results with $f_u = f_d$

Fit Parameter	e+SVT	$\mu + \text{SVT}$
f_u/f_d	1.0	1.0
$f_s/(f_u+f_d)$	$0.163{\pm}0.008$	$0.158{\pm}0.006$
$f_{\Lambda_b}/(f_u+f_d)$	$0.294{\pm}0.020$	$0.277{\pm}0.015$
$\Gamma \ [{ m ps}^{-1}]$	$0.0156{\pm}0.0007$	$0.0153{\pm}0.0007$
$\Gamma^* [\mathrm{ps}^{-1}]$	$0.0330{\pm}0.0014$	$0.0335{\pm}0.0013$
$\Gamma^{**} \ [\mathrm{ps}^{-1}]$	$0.0144{\pm}0.0010$	$0.0143{\pm}0.0010$
$N(\bar{B}^0)$ (10 ⁹)	$2.05{\pm}0.07$	$3.00{\pm}0.10$

 $\begin{array}{l} \underline{2004 \ PDG} \\ w/o \ \overline{\chi} \ constraint: \\ f_{s}/(f_{u}+f_{d}) \ = \ 0.109 \ \pm \ 0.026 \\ f_{\Lambda_{b}}/(f_{u}+f_{d}) \ = \ 0.133 \ \pm \ 0.023 \end{array}$

with all constraints: $f_s/(f_u+f_d) = 0.134 \pm 0.014$ $f_{\Lambda_b}/(f_u+f_d) = 0.125 \pm 0.021$

Statistical errors ONLY
 Fix f_u/f_d = 1.0
 Results are consistent with default result

 Also very nice...

Relaxed Spectator Model

 $\begin{array}{l} \underline{2004 \ PDG} \\ w/o \ \overline{\chi} \ constraint: \\ f_{s}/(f_{u}+f_{d}) \ = \ 0.109 \ \pm \ 0.026 \\ f_{\Lambda_{b}}/(f_{u}+f_{d}) \ = \ 0.133 \ \pm \ 0.023 \end{array}$

with all constraints: $f_s/(f_u+f_d) = 0.134 \pm 0.014$ $f_{\Lambda_b}/(f_u+f_d) = 0.125 \pm 0.021$

Allow spectator model constraints to differ between B species

Total $\Gamma + \Gamma^* + \Gamma^{**} = \Gamma_{sl}$ and $(\Gamma^{(*,**)} - \Gamma_{PDG}^{(*,**)}) / \sigma_{\Gamma_{PDG}}$ constraints applied to each B meson separately

Fit Parameter Correlations

	f_u/f_d	$f_s/(f_u+f_d)$	$f_{\Lambda_b}/(f_u+f_d)$	г	۲*	F **	N(B ^o)
f _u /f _d		-0.021	-0.053	-0.011	-0.135	0.162	-0.249
$f_s/(f_u+f_d)$			0.077	-0.015	-0.058	0.150	-0.116
$f_{\Lambda_b}/(f_u+f_d)$				0.425	0.563	0.239	-0.575
г					0.657	-0.122	-0.674
*						0.134	-0.853
۲**							-0.436
N(B ^o)							