
CDF Trigger System

Veronica Sorin Michigan State University

University of Pennsylvania Experimental Particle Physics Seminar April 25, 2006

How to get my top quark event?

The Tevatron

Highest energy collider
Collide protons and antiprotons at CDF and D0
With a 1.96 TeV Center of mass energy
396ns between bunch crossings

Why is trigger so important?

 Tevatron provides collisions at a rate ~1.7MHz Event size ~ 1/4 MB actual CDF output to tape 20MB/s Trigger rejects 99.995% of crossings ! 	of
	Select events of interest, but :
	- σ _{Inel} ~ 50mb
	 For example σ_{top} ~ 7pb That is a ~1/10¹⁰ factor !!!
	- That is a ~1/10 ¹⁰ factor !!!

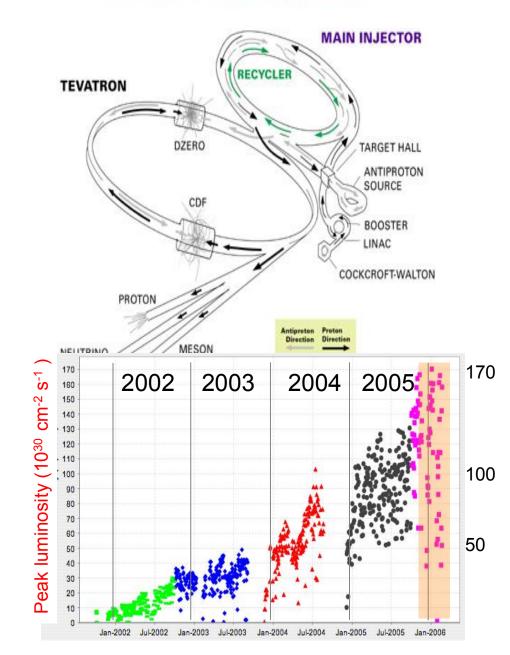
Need a trigger system that, keeps with high efficiency events of interest while rejecting unwanted ones

But do not forget !

CDF is a multipurpose detector

broad physics program including

- Top precision EW program
- Search for new phenomena
- Tests of perturbative QCD


•B physics

Cross sections vary by a factor of ~ 10^{10}

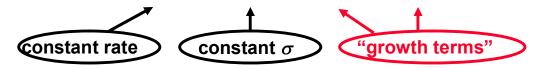
Try to accommodate all ! We want happy experimentalist faces...

FERMILAB'S ACCELERATOR CHAIN

Multiple interactions

36 x 36 bunches 1.7MHz crossing rate ↓ At High Luminosity: Multiple interactions !

$$L \cdot \sigma_{\text{inel}} = f_{BC} \cdot \mu$$


L = Instantaneus Luminosity $f_{\rm BC}$ = frequency of bunch crossing μ : average # of pp interaction per BC

 $\mu = 1.8 \leftrightarrow L \sim 5 \cdot 10^{31} \, cm^{-2} s^{-1}$ $\mu = 3.5 \leftrightarrow L \sim 10^{32}$ $\mu = 7.1 \leftrightarrow L \sim 2 \cdot 10^{32}$

Trigger Cross Sections

- For any process: rate $R = L\sigma$ (L = instantaneous luminosity, σ = cross section.)
 - For a physics process, σ is independent of L.
- For trigger cross sections, we observe:

 $\sigma = A/L + B + CL + DL^2$

- A, B, C, D are constants depending upon trigger.
- High purity triggers typically have C~D~O.
- Two effects cause extra powers of L:
 - Overlapping objects from different interactions.
 - Fakes that are luminosity dependent.
- Rates: $R=L\sigma = A + BL + CL^2 + DL^3$

Efficiency and Dead-time

- Goal of trigger is to maximize collection of data for physics process of interest:
 - Aim for high efficiency !
- For each process, look for:

 $\varepsilon_{trigger}$ = Ngood(accepted)/Ngood(Produced)

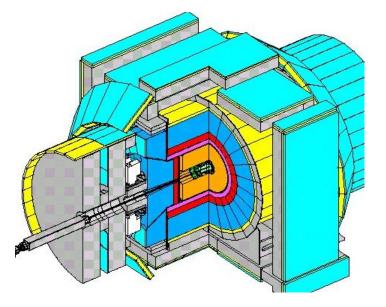
- And watch the dead-time !
- Trigger Dead-time:
 - Due to fluctuations, incoming rate is higher than processing one \rightarrow valid interactions are rejected due to system busy
- Buffering incoming data could reduce dead-time
- But dead-time always incurred if
 - <incoming rate> > 1/<processing time> !

Detectors

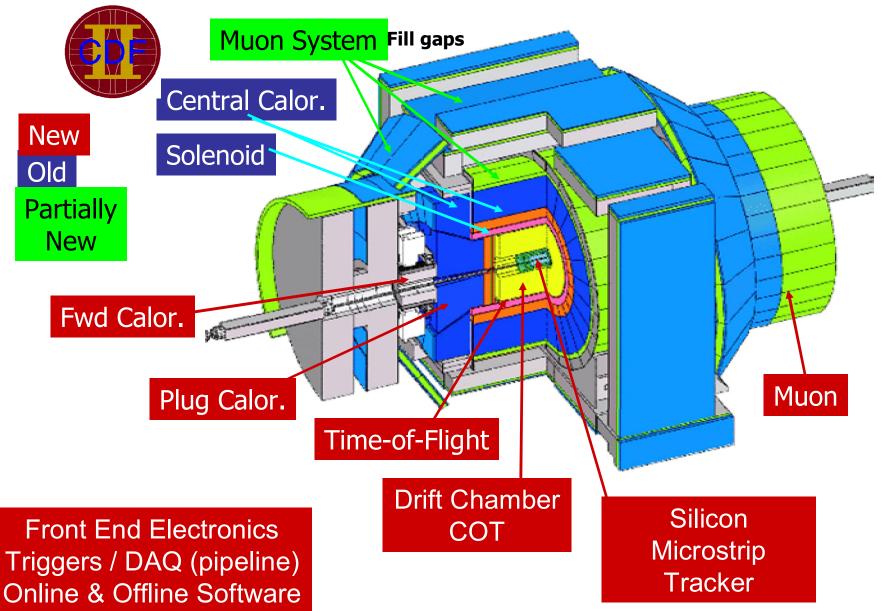
>Arrange different types of detectors in layers surrounded interaction point

>Starting from center moving outwards:

Tracking volume within a magnetic field:


To measure trajectory of charged particles with high precision Particle ID: Time-Of-Flight

Calorimeter usually divided in Electromagnetic and Hadronic

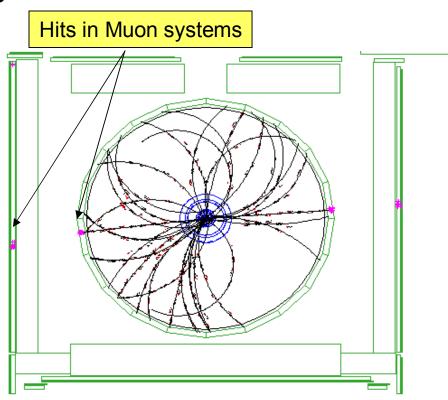

Absorbs and detects almost all strongly and electromagnetically interacting particles

>Muon chambers

Momentum of muons which make it through the calorimeter

CDF detector

Signatures for triggering


Accept specific decays modes

High P_T leptons from W, Z, top

Look for muon candidate:

Mu hit + track matching

--> simplest example

 $Z \rightarrow \mu^+ \mu^-$ Event

CDF Trigger Implementation

- To obtain high efficiency while large background rejection:
 - Multiple Trigger Levels
- Reject in steps with successively more complete information
- In each step, reject a sufficient fraction of events to not incurred in high dead-time at next stage
- Basic Idea:

 $\begin{array}{l} L1-fast~(\sim\!few~\mu s)~with~limited~information,~hardware~based\\ L2-moderately~fast~(\sim\!10s~of~\mu s),~hardware/software\\ L3-Commercial~processor(s) \end{array}$

Some examples

- Calorimeter triggers:
 - Single Tower trigger at L1
 - Tower clustering at L2
 - Jet algorithm at L3

Track triggers

 η =-ln(tan(θ /2))

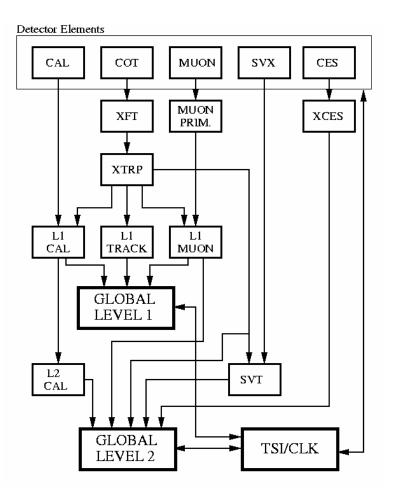
QuickTime[™] and a

TIFF (LZW) decompressor are needed to see this picture.

- COT provides track information at L1
- Silicon information is added at L2 (SVT) to measure impact parameter $\sigma(d)=35\mu m$

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

CDF has implemented a 3 level trigger


- Level-1 is a synchronous hardware trigger
 - Processing in parallel pipelined operation
 - L1 decision always occurs at a fixed time (~5 μ s after beam collision)
 - Input rate = 1.7MHz L1A rate ~ up to 35KHz
- Level-2 is a combination of hardware and software trigger (asynchronous)
 Average Level-2 processing time is ~30µs
 L2A rate ~ up to 600Hz
- Level-3 is purely a software trigger

 Massive PC farm running offline-type code
 Reconstruct complete events
 L3A rate ~ 100Hz
- Total Data rejection factor 1:20000

Dataflow of CDF "Deadtimeless" Trigger and DAQ

What do we trigger on?

- Various trigger subsystem generates primitives that we can "cut" on
- Available trigger primitives are: At L1:
 - Central tracking (XFT p_T>1.5GeV),

64

different triggers

- Calorimeter (EM and HAD): Electron (Cal +XFT), Photon (Cal), Jet (EM+HAD) L1 can output
- Missing Et, SumEt,
- Muon (Muon + XFT)

At L2:

- L1 information
- SVT (displaced track, d0)
- Jet cluster
- Isolated cluster
- Calorimeter ShowerMax

Combining Physics interests with System bandwidth limitations

Three Level system

Goals:

- Be efficient !
- Keep low dead-time
- But, how to
- Accommodate broad physics program
- And cope with increasing luminosity
- Very dynamic job !!!
 - Lots of work from trigger hardware and trigger database working group....

What is a Trigger Table?

- Trigger table is how our "trigger menu" is called:
 - "list" of selection criteria
 - Each item on the menu:
 - Is called Trigger Path
 - has three courses: L1, L2 and L3 "recipes":
 - Set of cuts-parameter/instructions particular of each level.
 - An event is stored if one or more trigger path criteria are met.
- Each time data taking starts ("a run"), the whole content is communicate to the system
- For bookkeeping, all "menus" and "recipes" are store in a specially designed Database.

Trigger Tables (II)

- Number of paths we are using: 185!
- Just some examples of what we could include....
- @ L =1.5 10³²cm⁻² s⁻¹

Higher rate than available bandwidth	Signature (L1 objects, raw rates)	Cross section (nb)	Rate(Hz)	
	Single tower (E _t >5 GeV)	0.4 x10 ⁶	60K	
	TWO TRACKS (p _t >2)	2 x10 ⁶	300K	
	Muon (p _t >8, 0.6< η <1.)	750	120	
	L2 triggers			
	Muon (p _t >15, 0.6< η <1.)	360	50	
	2 Jets (+Missing Et)	360	50	
	Central Electron (E _t >16 p _t >8)	170	23	
	Dimuon (p _t >2GeV)	220	30	

Signal/Backup

- Mentioned examples are not only used to look for that "special" signature (signal) one is interested in
- They are also used for calibration/efficiencies/background studies
- Term backup is misleading...
- For example, for top analyses, need to:
 - Measure L1/L2/L3 signal trigger efficiency
 - Calibrate b-tagging efficiency
 - Calibrate jet energy scale

The Challenge

To build the table...:

- Try to accommodate all physic interests within system bandwidth limitation
- Physics priorities are important
- Good ideas help to keep physics alive at high luminosities:
 - Improve purity
- Also important to optimize low luminosity range, where more bandwidth is available
- Try to keep low dead-time

Not a simple problem, not a unique solution !

Dynamic prescale

For large rate backup triggers, a prescale can be applied

- Prescale (PS) means to only accept a predetermined fraction of events
- The fraction is a fixed value for all luminosities (parameter stored in table for each particular trigger)
- Value determined accordingly to needed statistics (and system availability)

Trigger cross sections grow with luminosity \rightarrow as luminosity falls during a run trigger resources are freed up.

• What if we could change the prescale value while data taking?

- Dynamic prescales up and running since late 2002
- Applied to triggers with high growth term


Dynamic prescale (DPS) is a feedback system

- Reduces the prescales as luminosity falls

- Changes happen based on rates information accumulated on a time scale of minutes and amount of change depends on available trigger bandwidth at a given time The feedback can be also done at the μsec scale !

 \rightarrow This is what we call the "Uber Prescale (UPS)", it is still DPS.

-Enabling high rate L1 triggers whenever the system is idling. (effectively look at buffer occupancy) -In trigger table since 2004 -Applied to high rate L1 track trigger

One simple approach: Luminosity enable (DPS based on just luminosity):

Turns on/off a particular trigger at a given Instantaneous Luminosity. In table since 2005.

Hardware improvements

- Hardware improvements are a key to maintain system alive, especially at high luminosities
- Example: reduction in Level 2 execution time improves the bandwidth for L1A
- Examples are:
 - L2 Pulsar upgrade for L2 decision crate (UPenn big contributor!)
 - L2 SVT upgrade

Level 2 Decision Crate Upgrade

- The L2 Decision Crate is the heart of L2
- Receives data from 7 preprocessors

 (L1 Trigger, Calorimeter, Calorimeter isolation, ShowerMax (electrons), Muon, L1 Track (XFT) and L2 Silicon Tracking)
- Processor runs L2 algorithm and makes L2 Trigger decision

Upgraded from

6 flavors of custom interface boards

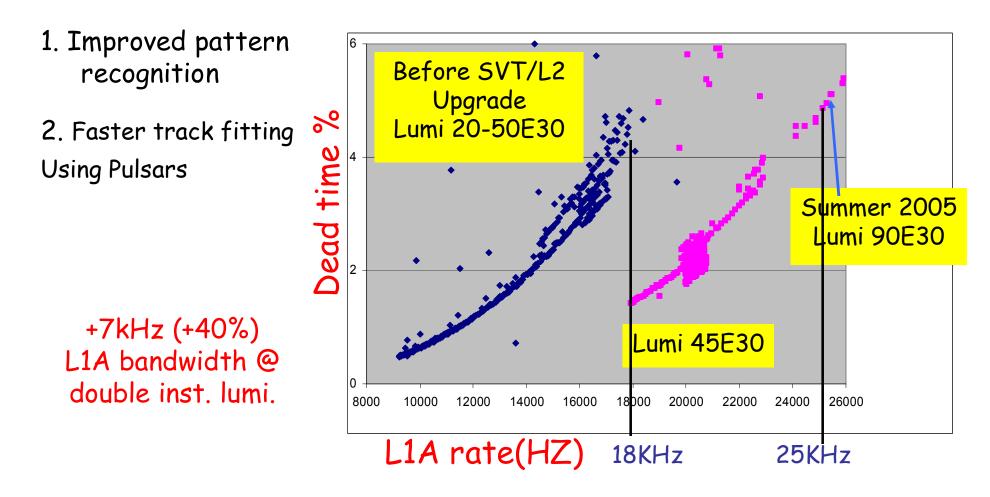
Custom Alpha processor

Data to processor on Custom Bus

Pulsar board as universal interfaceUse CERN S-LINK technology

to

•Linux PC Easily to upgrade when faster processor becomes available


- Full upgrade in place since September 2005.
- Has already shown high reliability
- Flexibility allows for future improvements to cope with increase of luminosity
- Average gain ~20 μ sec

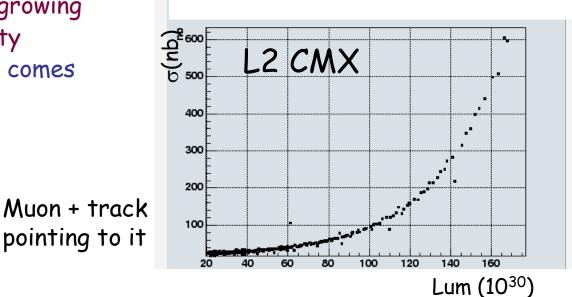
L2 SVT upgrade

• Helped to reduce the L2 latency by speeded up SVT execution

Done by improved capabilities:

High Luminosity effects

Cross section grows with luminosity:


$\sigma = A/L + B + CL + DL^2$

Two examples:

- Jet Triggers:
 - Current L2 Clustering algorithm sensitive to detector occupancy

- 1 4110 11 40110.

Track trigger rates growing rapidly with luminosity Dominant component comes from fake tracks

L2 Jet Trigger

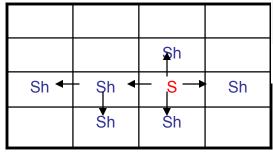
200 180

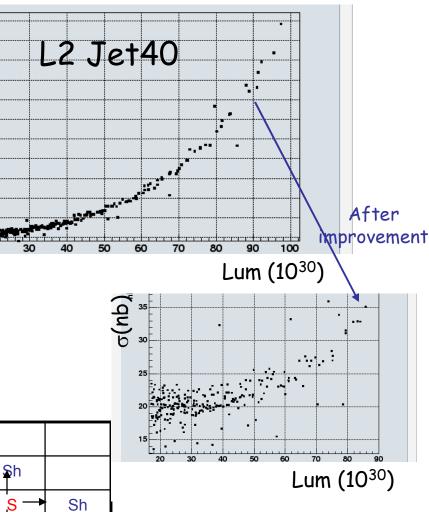
160

140

120 100

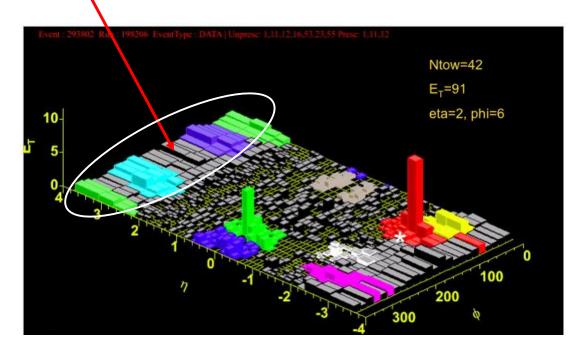
80


60


40

Observed high growth term $\frac{2}{2}$

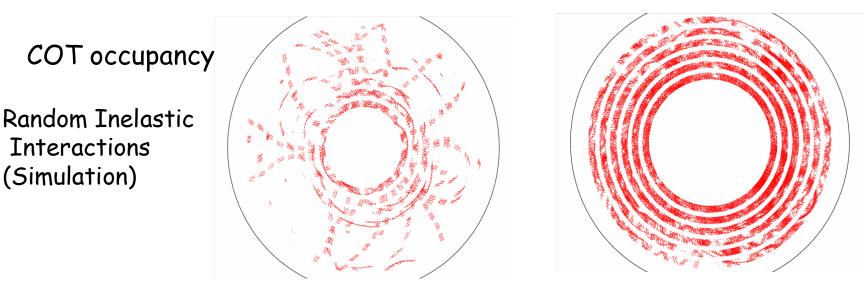
- Calorimeter is divided in trigger towers (0.2×15° η-φ) and energy information is sent to L2 Calorimeter trigger boards.
- This energy is clustered and check against trigger threshold.
- The clustering process is as follows:


Find "seed" tower (E>E_s) Look for adjacent shoulder towers (E>E_{Sh}) Continue until no shoulder is found

L2 Jet triggers (II)

- Found that rate increased due to "large" clusters in azimuth in forward region \rightarrow "Ring of Fire"
- Solved by increasing shoulder threshold
- As Luminosity increases, this could happen on other Calorimeter regions
- Not only a rate problem, could cause inefficiencies on triggers that require many jets (for example top hadronic)

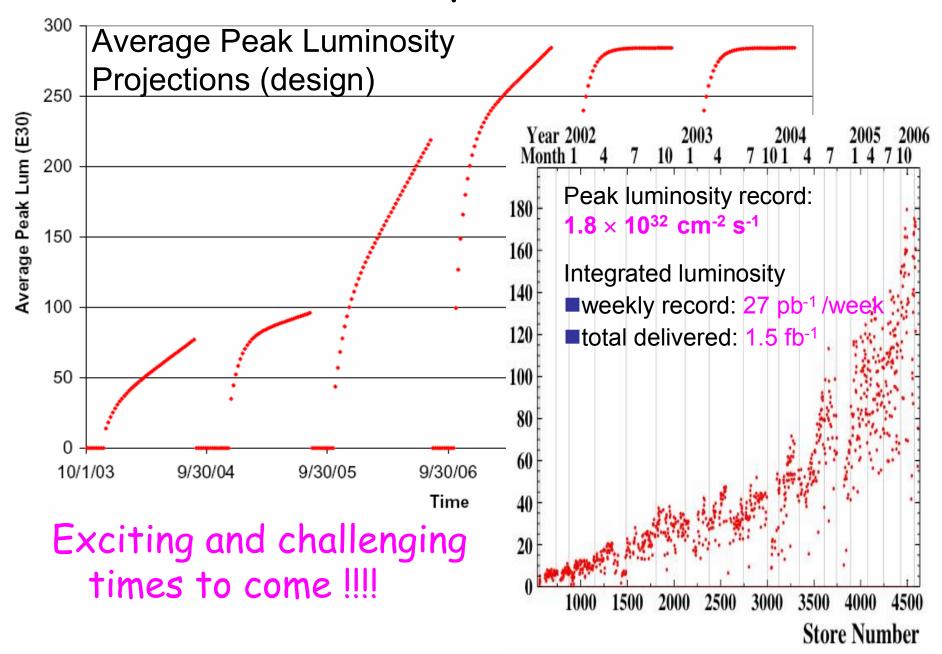
- Possible solutions:
 - -Increase threshold on other regions too (what about efficiency?)
 - -Improve clustering algorithm (Pulsar based system is flexible enough)


Fake tracks

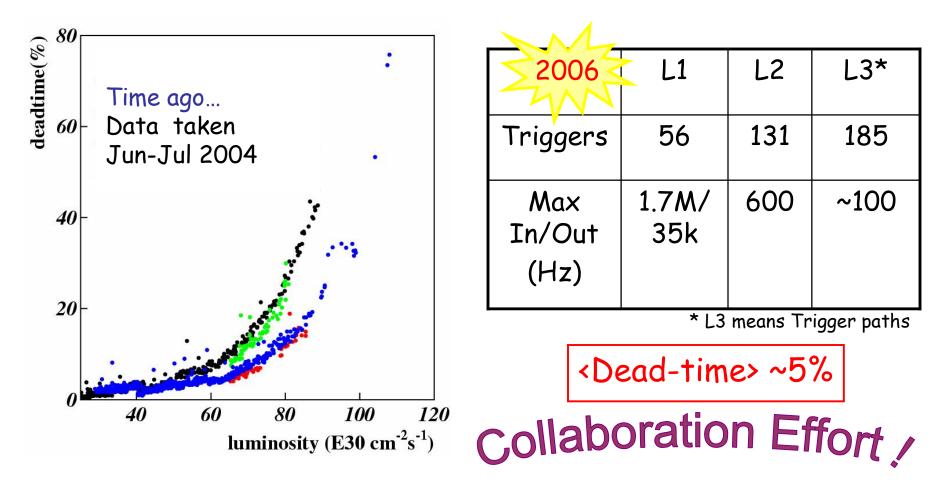
Extra occupancy due to increase of number of interactions per crossing \rightarrow more chance for confusion:

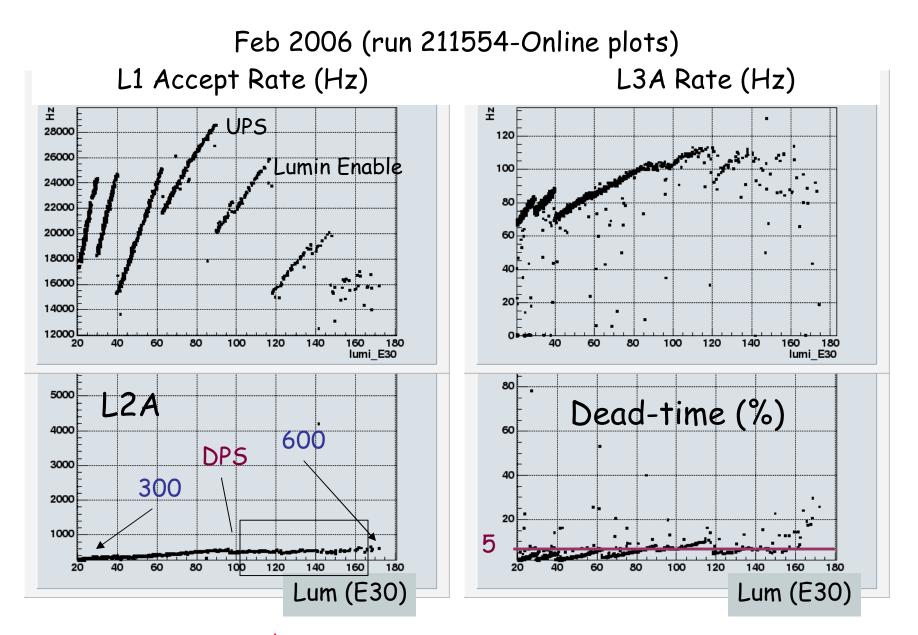
Fake tracks

(Simulation)


- Worse resolution
- Currently only using 4 axial layers (only 2D information)
- •XFT Upgrade will add stereo (z) information from 3 outer layers
- •Expect to reduce fakes by ~ x5 (trigger dependent)

Luminosity ~ 3E31


Luminosity ~ 4E32


Tevatron performance

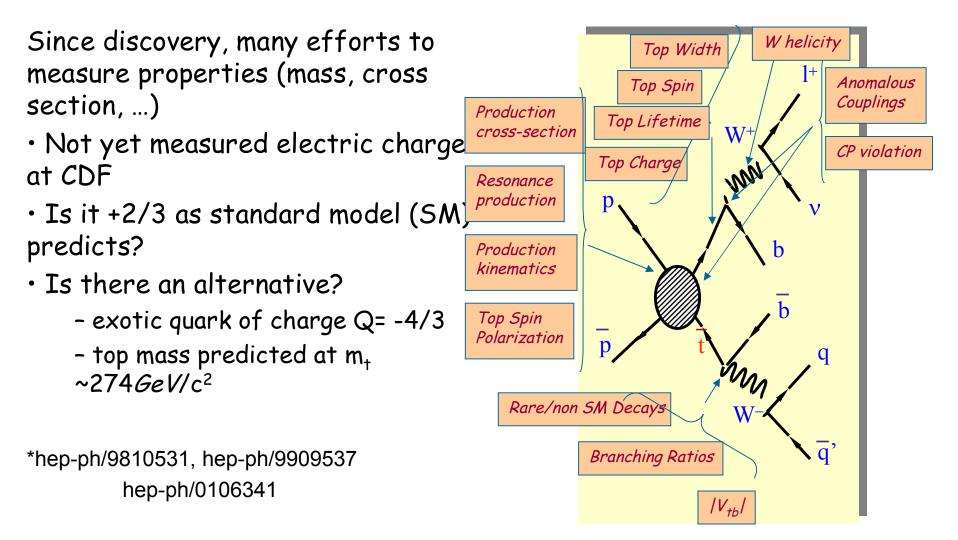
How CDF is doing?

Used to have two tables (high and medium-low Lum) Now , only one table for whole luminosity range !

1.3fb⁻¹ data on tape to analyze !

Summary

- Trigger is very important and interesting at hadron colliders
- Trigger is also very challenging, make it even more interesting
- One of the best places for young physicists to get trained on large experiment


Be a trigger person, Join the fun !!!

Top Charge Measurement at CDF

Veronica Sorin Michigan State University

University of Pennsylvania Experimental Particle Physics Seminar April 25, 2006

Top Properties Why top charge?

Top production and decay

Top Decay

t→Wb ~ 100% 2 b jets Final state determined by W decay

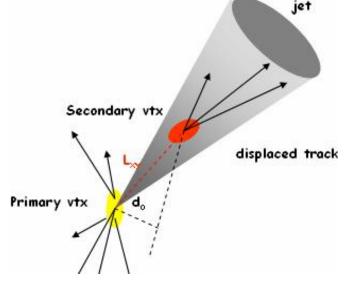
Dilepton:

Both W's decay via $W \rightarrow Iv$ (I=e or μ , 5%) Lepton+jets:

One W decays via $W \rightarrow I_V$ (l=e or μ , 30%) All hadronic:

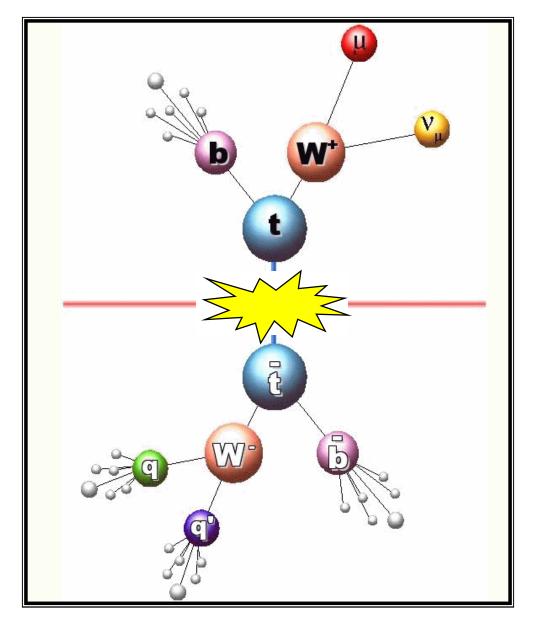
Both W's decay via $W \rightarrow qq$ (44%)

At Tevatron, top quarks are primarily produced in pairs


 $\sigma(\overline{p}p \rightarrow t\bar{t} @M_{top} = 175 GeV) \approx 6.7 \text{ pb}$

One top pair per **10**¹⁰ inelastic collisions !!

Event Selection


- Use data collected by looking for central electron and muons
- Use Dilepton and Lepton + jets final states. •
 - DIL: 2 leptons Et>20 GeV, 2 jets Et>15 GeV (basic selection)
 - L+J: leton Et>20GeV, 4 jets Et>15GeV (basic selection)
 - What about the b jets on the event !?
 - find those jets using a secondary vertex algorithm:
 - b quarks are long lived
 - Can be "tagged" by looking for the decay vertex
 - Find displaced tracks in jet (cone 0.4)
 - Efficiency ~50% (loose tagger)
 - Wrong assignment (mistags) ~1%

Only used for L+J case

Measuring the sign of the top charge

- If what we observed is an exotic quark of Q=-4/3 :
 - Expect W⁻b instead of W⁺b
- What do we need?:
 - Charge of W
 (charge of lepton)
 - Assignment of b jet to the W
 - Flavor of b jet (is it a b or anti-b?)

Method and performance

- Let's define:
 - N^+ = # events assigned as W⁺b and N⁻ = # events assigned as W⁻b
 - Asymmetry (A) :

 $A = \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$

 But paring and flavor tagging mismeasurement distort the assignment of N⁺ or N⁻

Purity
$$P = \frac{N_{Right}}{N_{Right} + N_{Wrong}}$$

N_{Right} : # correctly assigned events

Dilution
$$D = \frac{N_{Right} - N_{Wrong}}{N_{Right} + N_{Wrong}}$$
, $D = 2P-1$

- Relation between "true" asymmetry and the measured one:
- And the uncertainty on A_{true}:

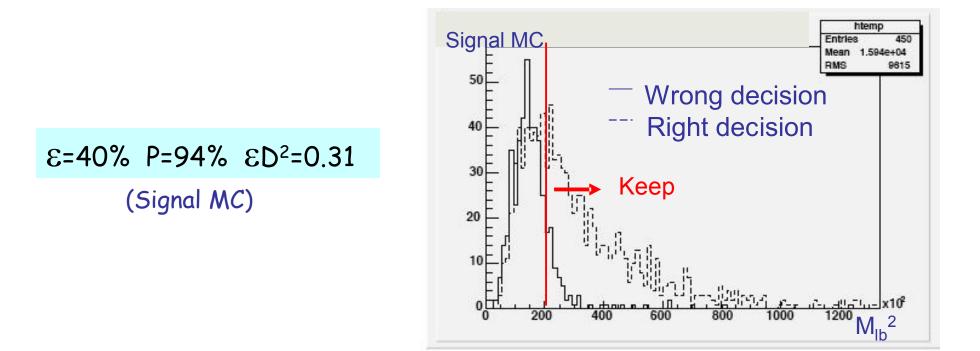
$$A_{true} = \frac{A_{meas}}{D}$$
$$\sigma_{A} \propto 1 / \sqrt{(\varepsilon D^{2} N)}$$

E: efficiency of the various applied selection criterion

Need to optimize $\varepsilon D^2 \parallel \parallel$

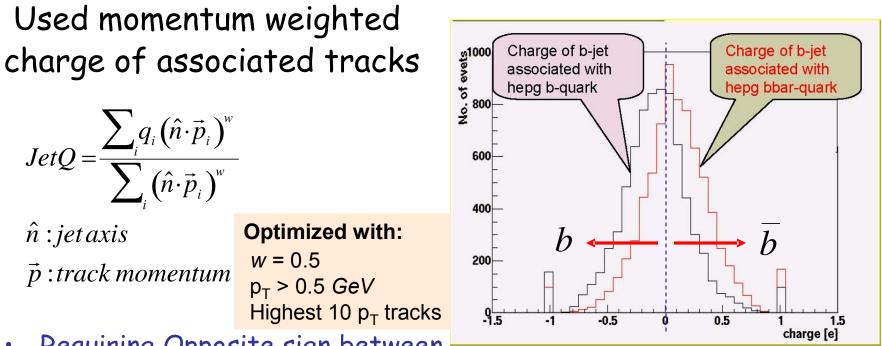
Reconstructing the event

Lepton + jets


Kinematic fitter :

- Using kinematic information, χ^2 fitter \rightarrow assign jets to partons
- 4 jets events \rightarrow 12 jet-parton assignment
- By requiring 2 b tagged jets → only 2 combinations (improve also Signal to Background ratio)
- Select assignment with smallest χ^2
- Optimized by requiring events with $\chi^2 < 9$. (same cut used by top mass analysis)

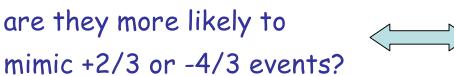
E=57% P=82% ED2=0.24 (Signal MC)


Dilepton

- Assign b jets to the 2 most energetic jets
- Determine invariant mass lepton-bjet (M_{lb})
- 2 combinations, 4 M_{Ib} values
- Select events with M_{lb}^2 > 22000 GeV/c²
- And used the combination that do not include $M_{Ib max}$

B Flavor Tagging

• Is it b or anti-b? Correlation with b-jet charge?



• Requiring Opposite sign between $\frac{1}{2}$ Jers.

Dilepton:ε=49% P=73% εD²=0.1 (Signal MC) Lepton+jets: ε=53% P=74% εD²=0.13

Background studies

- Some events are not "top" but "look" like it
- Studied same backgrounds than other top analyses
- But not only need number of them:

Is the fraction of N⁺ events (f⁺) 50% ?

Lepton + jets : 26 events after eff. (signal, scaled to 1fb^{-1})			
Background	Expected # of events	N _B /N _T (%)	Fraction f ⁺
W+HF		22	
QCD		31	
Diboson	2.7	2	0.52±0.01
Mistags		40	
Single Top		5	
Dilepton : 9.4 events after eff. (signal, scaled to 1fb ⁻¹)			
Drell-Yan		70	
Fakes	6.4	22	0.5
Diboson		8	

Sensitivity studies

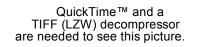
- Use Profile Likelihood (eliminate dependence on nuisance parameters) → function of f⁺ (fraction of 2/3 assigned events).
- How likely is the data consistent with the SM (%CL)?
- Studies showed strong dependence on purity of data ($p_{\rm s})$
- Weak dependence on number and asymmetry of background

Need to do a good job measuring p_s !

Summary

- Have developed and optimized a method to determine top charge for first time at CDF.
- Studied backgrounds and sensitivity
- Working on precise measurement of purity on data and studying systematics
- Plan to have a result for 1fb⁻¹ for summer conferences

Backup


Statistical Treatment

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

> QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Z. Gunay's talk APS

Purity on Data

Double tagged events
Look for semileptonically decay (muon)
Jet Charge applied on away jet
Get number of Opposite Sign (OS)
events where Q_{away} Qµ < 0

Correct for: $\cdot B \rightarrow c \rightarrow \mu$ $\cdot Mixing$ Give same sign (SS) events $\cdot Background$ (use Pt_{rel} to cut or fit)