

Results of a Global Search for New Physics at CDF

Conor Henderson, MIT on behalf of the CDF Collaboration

HEP Seminar University of Pennsylvania 13 November 2007

Rise and Fall of the Standard Model?

Standard Model of FUNDAMENTAL PARTICLES AND INTERACTIONS

Standard Model summarizes the current knowledge in Particle Physics. It is the quantum theory that includes the theory of strong interactions (quantum chromodynamics or QCD) and the una bear of weak and electromaphic interactions (quantum chromodynamics or QCD) and the una bear of the final method and the una strong and the interactions (quantum chromodynamics) and electromaphic final descent and electromaph

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,

Leptor	15 spin		Quarks spin = 1/			
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Elec cha	
ve electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2	
e electron	0.000511	-1	d down	0.006	-1.	
ν_{μ} muon neutrino	< 0.0002	0	C charm	1.3	2.	
μ muon	0.106	-1	S strange	0.1	-1	
ν_{τ} tau neutrino	<0.02	0	t top	175	2.	
au tau	1.7771	-1	b bottom	4.3	-1	

spin is the intrinsic angular momentum of particles. Spin is given in units of \hbar , which is the uantum unit of angular momentum, where $\hbar = h/2\pi = 6.58 \times 10^{-25}$ GeV s = 1.05×10^{-24} J s.

Electric charges are given in units of the proton's charge. In SI units the electric charge of the proton is 1.60×10⁻¹⁹ coulombs.

The **energy** unit of particle physics is the electronvolt (eV), the energy gained by one electron in crossing a potential difference of one volt. **Masses** are given in GeVic² (remember $i = mc^2$), where 1 GeV = 10^9 eV = 1.60×10^{-10} joule. The mass of the proton is 0.938 GeV/c² : 1.57×10^{-27} kg.

0.938

0.938 1/2

0.940

1.116

1.672 3/2

1/2

Struc	ture within	
th	e Atom	
Quark Size < 10 ⁻¹⁹ m		e
Nucleus Size ~ 10 ⁻¹⁴ m	a _	Electron Size < 10 ⁻¹⁸ m
e" u d d	00 -	Neutron and Proton
Atom Size = 10 ⁻¹⁰ m		Size = 10 ⁻¹⁵ m
If the protons and new then the quarks and e	rons in this picture were ectrons would be less that	10 cm across, an 0.1 mm in

PROPERTIES OF THE INTERACTIONS

Gravitational	Weak	Electromagnetic	Stro	ong		M	
	(Electr	oweak)	Fundamental	Residual	There		
Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note	Symbol	Nam	
All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons	π^+	nior	
Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons			
10-41	0.8	1	25	Not applicable	ĸ	kaon	
10-41	10-4	1	60	to quarks	ρ^+	rho	
10 ⁻³⁶	10 ⁻⁷	1	Not applicable to hadrons	20	B ⁰	B-zee	
					η_{c}	eta-	
	Gravitational Mass - Energy All Graviton (not yet observed) 10 ⁻⁴¹ 10 ⁻³⁵	Gravitational Weak (Electric Mass - Energy Flavor All Quarks, Leptons Graviton (notivet observed) W+ W- Z ⁰ 10-41 0.8 10-56 10-7	Weak Electromagnetic (Electroweak) Mass - Energy Flavor Electric Charge All Quarks, Leptons Electrically charged Graviton (not yet observed) W+ W- Z ⁰ γ 10 ⁻⁴¹ 0.8 1 10 ⁻⁴¹ 10 ⁻⁴ 1 10 ⁻³⁵ 10 ⁻⁷ 1	Gravitational Weak (Electroweak) Electromagnetic Fundamental Struct Fundamental Mass - Energy Flavor Electric Charge Color Charge All Quarks, Leptons Electric Charge Quarks, Gluons Graviton (not yet observed) W+ W ⁻ Z ⁰ γ Gluons 10-41 0.8 1 25 10 ⁻⁴¹ 10 ⁻⁴ 1 60 10 ⁻³⁵ 10 ⁻⁷ 1 Not applicable to hadrons	Weak Electromagnetic (Electroweak) Strong Fundamental Residual Mass - Energy Flavor Electric Charge Color Charge See Setuil Storag Interaction Note Interaction Note All Quarks, Leptons Electrically charged Quarks, Gluons Hadrons Graviton (not yet observed) W+ W-Z ⁰ γ Gluons Masons 10-41 0.8 1 25 Not applicable to quarks 10-41 10-4 60 Not applicable to hadrons 20	Weak Electromagnetic (Electroweak) Strong Fundamental Residual Residual Symbol Mass - Energy Flavor Electric Charge Color Charge See Beildual Strong Interaction Note Symbol All Quarks, Leptons Electric Charge Quarks, Gluons Hadrons π+ Graviton (not yet observed) W+ W- Z ⁰ Y Gluons Mesons K- 10-41 0.8 1 25 Not applicable to quarks ρ+ gluons B0 10-43 10-7 1 Not applicable to hadrons 20 B0	

Matter and Antimatter

or every particle type there is a corresponding antiparticle type, denoted by a bar over the particle symbol (unless - or - charge is shown) article and artiparticle have dentical mass and spin but opposite harges. Some electrically neutral bosons (e.g., Z^{0} , γ , and $\eta_{c} = c\bar{c}$, but no $^{0} = d\bar{s}$) are their own antiparticle.

0

Barvons ggg and Antibarvons gg

arvons are fermionic hadr

uud

ūūd

udd

uds

SSS

Figures

These diagrams are an artist's conception of physical processes. They are not exact and have no meaningful scale. Green shaded areas represent the cloud of gluons or the gluon field, and red lines the quark paths.

η_c eta-c C C 0 2.980 The Particle Adventure With the award-winning web feature. The Particle Adventure at http://ParticleAdventure.org

force carriers

Name

aluon

Color Charge Each guark carrie

strong charge " also called "

Mesons at

0.140

-1 0.494

ud

sū

ud +1 0.770

db

0 5.27

spin = 0, 1, 2, ...

Strong (color) spin = 1 Mass Elect

GeV/c2

0

0

BOSONS

Electri

charge

0

-1

+1

late guarks and gluons: they are confined in color-neutral p

Unified Electroweak spin =

Name

nhotor

W-

W+

70

Mass GeV/c²

0

80.4

80.4

91 187

I particles interact by exchanging photo by exchanging gluons. Leptons, photo and hence no color charge. <u>nfined in Mesons and Baryons</u>

> is chart has been made possible by the generous supp). Department of Energy National Science Foundation wrence Berkeley National Laboratory Inford Interal Accelerator Conter Inford Interal Accelerator Conter Infold Interaction Interaction

©2000 Contemporary Physics Education Project. CPEP is a non-profit organiza trion of teachers, physicies, and educators. Send nail to: CPEP. NS 50308, laverenc Berkeley National Laboratory, Berkeley, CA, 94720. For information on charts, text materials, hand-on classroom activities, and workshops, see: http://CPEP.web.org

Standard Model has been remarkably successful...

But we do not
expect it to
describe Nature
up to the Planck
Scale

From Electroweak to Planck Scale

Conor Henderson

Searching for Physics Beyond the Standard Model

- How should we search for new physics when we really do not know what to expect?
- Let the data itself be our guide
- Perform global search for significant discrepancies between the observed data and the Standard Model prediction

Global Search with Vista and Sleuth

- Vista: can bulk high-p_T data be described by the Standard Model?
- Sleuth: quasi-model-independent search for new physics at high-p_T

Vista/Sleuth Strategy

- Generate our best attempt at a global Standard Model prediction; compare to the CDF data
- Vista considers the populations of final states and kinematic distributions
- Sleuth searches for excesses in the high- p_{T} tails
 - examines a single variable (Σp_T)
 - very effective for a model-independent search for EW-scale physics
- Seek significant (~5σ) discrepancies in the data that may indicate the presence of new physics
 - any observed discrepancy triggers further scrutiny

Strengths and Limitations of Vista/Sleuth

- Strengths:
 - Model independent
 - Looks in many places (in case Nature surprises us!)
- Limitations:
 - Will not be sensitive to low cross-section new physics that occurs in the bulk
 - Sleuth is not optimized for any specific model of new physics
 - Some systematic uncertainties are not incorporated into Sleuth's search

Overview of Vista

- Identify physics objects
 - e^{\pm} , μ^{\pm} , τ^{\pm} , γ , j, b, $\not E_{T}$
 - require $p_T > 17 \text{ GeV}$
- Select events

Conor Henderson

- require high-p_T lepton,
 photon, jet triggers
- Partition events into ~300 exclusive final states
 - boxes created if populated by data

Overview of Vista (ctd.)

- Generate our implementation of Standard Model
 - primarily use Pythia and MadEvent
 - simulate detector with CDFSim
- Determine correction factors
- Perform Vista global comparison
- Look for discrepancies in bulk of data

The Vista Correction Model

- Vista uses a simplified correction model to attempt to describe bulk features of the data
- Correction factors needed to match Standard Model prediction to real data:
 - Luminosity of data sample
 - Theoretical k-factors for cross-sections
 - Particle (mis-)identification probabilities
 - Trigger efficiencies

Correction Factors

- 44 correction factors used in total
- k-factors for SM processes:
 - QCD multi-jets;
 - W, Z + jets;
 - (di)photon+jets
- Fake rates:
 - jet faking photon, electron, muon, tau, b-quark
- Trigger efficiencies for electrons and muons

Determining the Correction Factors

Obtain values (and errors)
 for correction factors by
 fitting to the observed data

$$\chi^2(\vec{s}) = \left(\sum_{k \in \text{bins}} \chi^2_k(\vec{s})\right) + \chi^2_{ ext{constraints}}(\vec{s})$$

$$\chi_k^2(\vec{s}) = \frac{(\text{Data}[k] - \text{SM}[k])^2}{\delta \text{SM}[k]^2 + \sqrt{\text{SM}[k]}^2}$$

- Fit seeks to maximize global agreement between our Standard Model implementation and the data
- Available external information is used to constrain ~40% of the correction factors
 - e.g. constraints on k-factors from higher-order calculations

Is This A Blind Analysis?

- No. We started with a crude correction model, and refined it after looking to see where it failed to describe the data
- The development of the correction model and associated debugging is not an automated process
- Refining the correction model requires judgement, and all adjustments must be physically motivated
- This process ends when either:
 - a clear case for new physics can be made
 - or there remain no discrepancies that motivate a case for new physics

The Vista Global Comparison

- How well are we able to describe the bulk features of the high-p_T data?
- Figures of merit:
 - discrepancy in populations of final states
 - discrepancy in distributions of kinematic variables
- Account for number of places we look trials factor
- Example Vista output:

Conor Henderson

Final State	Plots Observed	Expected	Discrepancy (σ)	Discrepant Distributions (O)
le+le-	[plots] 58344	58575.6+-603.9	0	pmiss_pt 4 mass(e+,e-) 2.5

Vista Comparison Results

Final State	Data	Background	Final State	Data	Background	Final State	Data	Background
$3j\tau +$	71	113.7 ± 3.6	2e+j	13	9.8 ± 2.2	$e + \gamma p$	141	144.2 ± 6
5 j	1661	1902.9 ± 50.8	2e+e-	12	4.8 ± 1.2	$e + \mu - \phi$	54	42.6 ± 2.7
$2i\tau +$	233	296.5 ± 5.6	2e+	23	36.1 ± 3.8	$e + \mu + \eta$	13	10.9 ± 1.3
be+i	2207	2015.4 ± 28.7	$2b \Sigma n_T > 400 \text{ GeV}$	327	335.8 ± 7	$e + \mu$	153	127.6 ± 4.2
$3i \Sigma n\pi < 400 \text{ GeV}$	35436	37294.6 ± 524.3	$2b \Sigma_{PT} \leq 400 \text{ GeV}$	187	173.1 ± 7.1	e+i	386880	392614 ± 5031.8
$a \perp 3id$	1054	1751.6 ± 42	$2b 2p_T < 100 GeV$	- 28	335 + 55	o⊥j2~	14	150 ± 20
t 0,p be⊥2;	708	605.3 ± 13.3	$2b0j \Sigma p_T < 400 \text{ GeV}$	355	326.3 ± 8.4	0 j 2 7 0 + i 7 +	70	79.3 ± 2.0
$2id \Sigma_{n-1} > 400 CoV$	911	050.5 ± 10.5	$2b_{2j} \Sigma p_T > 400 \text{ GeV}$	56	80 9 ± 5		169	149.9 ± 7.6
$3Jp \ \Delta p_T > 400 \ \text{GeV}$	011	907.0 ± 30.4	$2b_2 J \Delta p_T < 400 \text{ GeV}$	10	30.2 ± 3		20210	148.8 ± 1.0
$e + \mu +$	20	11.0 ± 1.0	$2D_2 \gamma$	10	15.4 ± 3.0	e+jp	00040	$5/391.7 \pm 001.0$
$e + \gamma$	030	551.2 ± 11.2	$2D\gamma$	31	31.7 ± 4.8	$e+j\gamma p$	52	76.2 ± 9
e+3j	28656	27281.5 ± 405.2	$2b_J \Sigma p_T > 400 \text{ GeV}$	415	393.8 ± 9.1	$e+j\mu-p$	22	13.1 ± 1.7
b5j	131	95 ± 4.7	2 bj $\Sigma p_T < 400$ GeV	161	195.8 ± 8.3	$e+_{J}\mu$ -	28	26.8 ± 2.3
$j^{2\tau}+$	50	85.6 ± 8.2	$2 \text{bj} p \ \Sigma p_T > 400 \text{ GeV}$	28	23.2 ± 2.6	e+e-4j	103	113.5 ± 5.9
$j\tau + \tau$ -	74	125 ± 13.6	$2 \mathrm{bj} \gamma$	25	24.7 ± 4.3	e+e-3j	456	473 ± 14.6
$b \not p \ \Sigma p_T > 400 \text{ GeV}$	10	29.5 ± 4.6	2be+2jø∕	15	12.3 ± 1.6	e+e-2j⊅	30	39 ± 4.6
$e+j\gamma$	286	369.4 ± 21.1	2be+2j	30	30.5 ± 2.5	e+e-2j	2149	2152 ± 40.1
e+j ¢ τ-	29	14.2 ± 1.8	2be+j	28	29.1 ± 2.8	$e + e_{-\tau} +$	14	11.1 ± 2
$2 \mathrm{j} \ \Sigma p_T < 400 \ \mathrm{GeV}$	96502	92437.3 ± 1354.5	2be+	48	45.2 ± 3.7	e+e-p∕	491	487.9 ± 12
be+3j	356	298.6 ± 7.7	$\tau + \tau_{-}$	498	428.5 ± 22.7	$e + e - \gamma$	127	132.3 ± 4.2
8j	11	6.1 ± 2.5	$\gamma \tau +$	177	204.4 ± 5.4	e+e-j	10726	10669.3 ± 123.5
7i	57	35.6 ± 4.9	~ p	1952	1945.8 ± 77.1	e+e-ip	157	144 ± 11.2
6i	335	298.4 ± 14.7	$\mu + \tau +$	18	19.8 ± 2.3	$e + e - i\gamma$	26	45.6 ± 4.7
$4i \Sigma p_T > 400 \text{ GeV}$	39665	40898.8 ± 649.2	$\mu + \tau$	151	179.1 ± 4.7	e+e-	58344	58575.6 ± 603.9
$4i \Sigma p_T \leq 400 \text{ GeV}$	8241	8403.7 ± 144.7	$\mu + \eta$	321351	320500 ± 34755	b6i	24	15.5 ± 2.3
4j2~	2241	575 ± 11	$\mu + \mu$	021001	25.8 ± 2.7	b4j $\Sigma_{nm} > 400 \text{ GeV}$	13	92 ± 18
412.9		37.0 ± 11	$\mu + p_{1} - \dots$	22	20.0 ± 2.1	$b_{4j} \Sigma p_T > 400 \text{ GeV}$	10	9.2 ± 1.0
4JT +	20	50.9 ± 2.4	$\mu + \gamma$	209	280.0 ± 0.9	by $\Sigma p_T < 400 \text{ GeV}$	404	499.2 ± 12.4
$4jp \Sigma p_T > 400 \text{ GeV}$	516	525.2 ± 34.5	$\mu + \gamma p$	269	282.2 ± 0.0	$p_{3j} \Sigma p_T > 400 \text{ GeV}$	0304	5285 ± 72.4
4jγ p	28	53.8 ± 11	$\mu + \mu - p$	49	61.4 ± 3.5	$b_{3j} \Sigma p_T < 400 \text{ GeV}$	1639	1558.9 ± 24.1
$4j\gamma$	3693	3827.2 ± 112.1	$\mu + \mu - \gamma$	32	29.9 ± 2.6	$b3jp \Sigma p_T > 400 \text{ GeV}$	111	116.8 ± 11.2
$4j\mu +$	576	568.2 ± 26.1	$\mu + \mu$ -	10648	10845.6 ± 96	$\mathrm{b3j}\gamma$	182	194.1 ± 8.8
4jµ+ p	232	224.7 ± 8.5	$j2\gamma$	2196	2200.3 ± 35.2	b3jµ+∲	37	34.1 ± 2
$4j\mu + \mu$ -	17	20.1 ± 2.5	$j2\gamma p$	38	27.3 ± 3.2	$b3j\mu +$	47	52.2 ± 3
3γ	13	24.2 ± 3	$j\tau +$	563	585.7 ± 10.2	$\mathrm{b}2\gamma$	15	14.6 ± 2.1
$3 \mathrm{j} \ \Sigma p_T > 400 \ \mathrm{GeV}$	75894	75939.2 ± 1043.9	$j \not p \Sigma p_T > 400 \text{ GeV}$	4183	4209.1 ± 56.1	b2j $\Sigma p_T > 400 \text{ GeV}$	8812	8576.2 ± 97.9
$_{3j2\gamma}$	145	178.1 ± 7.4	jγ	49052	48743 ± 546.3	b2j $\Sigma p_T < 400 \text{ GeV}$	4691	4646.2 ± 57.7
$3j \not p \Sigma p_T < 400 \text{ GeV}$	20	30.9 ± 14.4	$i\gamma\tau +$	106	104 ± 4.1	$b_{2j} \not p_T > 400 \text{ GeV}$	198	209.2 ± 8.3
$3j\gamma\tau +$	13	11 ± 2	j~10	913	965.2 ± 41.5	$b2j\gamma$	429	425.1 ± 13.1
$3i\gamma p$	83	102.9 ± 11.1	$i\mu +$	33462	34026.7 ± 510.1	$b2i\mu + \phi$	46	40.1 ± 2.7
$\frac{3}{3i\gamma}$	11424	11506.4 ± 190.6	$i\mu + \tau_{-}$	29	37.5 ± 4.5	$b_{2i\mu}$ +	56	60.6 ± 3.4
$3iu \pm n$	1114	11187 ± 271	$i\mu + m\tau_{-}$	10	96 ± 21	$b\tau +$	19	19.9 ± 2.2
$3i\mu + \mu_{-}$	61	845 ± 92	$j\mu + p$	45728	46316.4 ± 568.2	b~	976	1034.8 ± 15.6
3ju ±	2132	9168.7 ± 64.9	$j\mu + p$	78	60.8 ± 0.0	ban	18	16.7 ± 3.1
$3hi \Sigma n = 5400 \text{ GeV}$	1/	0.2 ± 1.0	$J\mu + 7\mu$	70	03.0 ± 3.3	$b_{1}p$	303	2625 ± 70
2-1	916	9.5 ± 1.9	$J\mu + \gamma$	1077	90.4 ± 12.1	$b\mu +$	202	203.0 ± 7.9
$2\tau +$	310	290.8 ± 24.2	$J\mu + \mu$ -	1977	2093.3 ± 14.7	$D\mu + p$	204	218.1 ± 0.4
$2\gamma p$	101	176 ± 9.1	e+4j	7144	6661.9 ± 147.2	bj $\Sigma p_T > 400 \text{ GeV}$	9060	9275.7 ± 87.8
2γ	8482	8349.1 ± 84.1	e+4Jp	403	363 ± 9.9	bj $\Sigma p_T < 400 \mathrm{GeV}$	7236	7030.8 ± 74
$2j \Sigma p_T > 400 \mathrm{GeV}$	93408	92789.5 ± 1138.2	$e+3j\tau$ -	11	7.6 ± 1.6	bj 2γ	13	17.6 ± 3.3
$_{2j2\gamma}$	645	612.6 ± 18.8	$\mathrm{e}+3\mathrm{j}\gamma$	27	21.7 ± 3.4	$bj\tau +$	13	12.9 ± 1.8
$2j\tau + \tau$ -	15	25 ± 3.5	$e+2\gamma$	47	74.5 ± 5	$\mathrm{bj} p \Sigma p_T > 400 \mathrm{GeV}$	53	60.4 ± 19.9
$2j \not p \Sigma p_T > 400 \text{ GeV}$	74	106 ± 7.8	e+2j	126665	122457 ± 1672.6	$_{ m bj}\gamma$	937	989.4 ± 20.6
$2j \not p \ \Sigma p_T < 400 \text{ GeV}$	43	37.7 ± 100.2	$\mathrm{e+2j} au_{-}$	53	37.3 ± 3.9	bjγ p ∕	34	30.5 ± 4
$2j\gamma$	33684	33259.9 ± 397.6	$e+2j\tau+$	20	24.7 ± 2.3	bj µ+ ≱	104	112.6 ± 4.4
$2i\gamma\tau +$	48	41.4 ± 3.4	$e+2j\phi$	12451	12130.1 ± 159.4	$bj\mu +$	173	141.4 ± 4.8
$2i\gamma p$	403	425.2 ± 29.7	$e+2i\gamma$	101	88.9 ± 6.1	be+3i⊅	68	52.2 ± 2.2
$2i\mu + \phi$	7287	7320.5 ± 118.9	$e+\tau$ -	609	555.9 ± 10.2	be+2iz	87	65 ± 3.3
$2i\mu + \gamma m$	13	12.6 ± 2.7	$e + \tau +$	225	211.2 ± 4.7	be+n/	330	347.2 ± 6.9
$2i\mu + \gamma$	41	35.7 ± 6.1	e+	476424	479572 ± 5361.2	be+in	211	176.6 ± 5
$2i_{1}\mu + \mu_{-}$	374	304.2 ± 24.8	ວ⊤µ ໑⊥-ຑ~_	19	35 ± 2.7	bete-i	211	346 ± 26
~յµ ⊨ µ- 2iµ⊥	0519	0362.2 ± 24.0	ு <i>µ≀−</i> வ⊥ன்ச⊥		187 ± 10	bete	62	55 + 21
⊷յր⊷⊤	9010	0002.0 I 100.0	$\nabla T p i T$	∠0	10.4 1.9	0616-	02	00 <u>T</u> 0.1

Conor Henderson

344 exclusive final states considered

Systematic uncertainties not included when comparing final state populations

Vista Examples: W & Z Production

- W & Z k-factors well-constrained from NNLO calculations
- Act as constraints on luminosity of data sample

Vista Examples: Determining Fake Rates

faking a photon

- Also a peak at M_z , where electron is reconstructed as a jet
- Conor Henderson

Level of Agreement: Final State Populations

• Distribution of discrepancy between data and SM prediction for final state event populations - roughly Gaussian, centered at 0, width 1

• No final state shows significant deviation, after accounting for trials factor

• 8% chance of observing the largest population excess that we saw in the data

Level of Agreement: Kinematic Variables

• Distribution of discrepancy between data and SM prediction for kinematic variables – vast majority follow normal distribution

• Interest is focused on ~400 outliers = kinematic variables showing significant disagreement

Example of a Vista Discrepancy: 3j

- For 3j state, discrepancy in these distributions is observed
- Parameters for parton showering being investigated

Same Discrepancy in Many Final States

 Same underlying discrepancy manifest in many related final states

bjj, ejj, bej, etc...

 Accounts for ~90% of the distribution discrepancies

Vista: Intrinsic k_T

uncl p_{T} = Energy visible in the detector but not clustered into any object

• Simultaneously describing intrinsic k_{T} in all final states is difficult

Vista Results

- Our implementation of the Standard Model gives a remarkably good global description of the CDF high- p_{T} data
- No final state has a significant population discrepancy
- There are some significant shape discrepancies, most of which derive from the physics exemplified by:
 - $3j \Delta R(j_2, j_3)$ (~90%)
 - intrinsic k_{T} modeling (~9%)
- None of these remaining discrepancies motivate a new physics claim

Conor Henderson

Summary of Vista

- Vista attempts to understand bulk features of high-p_T collider data in terms of the Standard Model
- Identify objects, select and partition events, implement Standard Model prediction; novel approach to determine correction factors
- Perform global comparison of Standard Model to data:
 - reasonable description obtained
 - some discrepancies remain in kinematic variable distributions
 - none motivate a new physics claim

From Vista to Sleuth

• Understand bulk of data - Vista

• Focus on high- p_{T} tails -

Sleuth Conor Henderson

Shulnht

Sleuth: Goal and Assumptions

- Sleuth relies on the following assumptions:
 - New physics will appear predominantly in one final state
 - New physics will appear as excess of data over SM
 - New physics will appear at high Σp_{T}
- Sleuth will be less sensitive to new physics which does not satisfy these assumptions

What Sleuth Does

- Sleuth's variable:
- Scan the Σp_T spectrum to
 select the region in each final state with the most
 significant excess of data
 over SM prediction
 - require >=3 data events
- Perform pseudoexperiments to assess the significance

Conor Henderson

$$\sum p_T \equiv \sum_i |\vec{p}_i| + \left| \overrightarrow{\text{uncl}} \right| + \left| \vec{p} \right|,$$

Significance of this region

What Sleuth Does Next

- Now consider all Sleuth final states
 - if the data were just drawn from our SM implementation,
 what fraction of similar *complete CDF experiments* would
 have produced by chance a region in any final state as or
 more interesting than the most interesting one we found?
- Sleuth rigorously accounts for the trials factor in the regions it searches
- We set the Sleuth discovery threshold: $\tilde{P} < 0.001$
 - with a trials factor from ~60 final states with ~50 data events, this corresponds to a ~5 σ effect in the selected region

Would Sleuth Have Found the Top Quark?

- Remove top quark from SM; refit correction factors
- Sleuth easily finds top in 1 fb⁻¹
- Estimated luminosity for Sleuth discovery ~80 pb⁻¹ (Run I discovery = 67 pb⁻¹ at $\sqrt{s}=1.8$ TeV)

Conor Henderson

Sleuth Sensitivity to Other SM Processes

- WW: discovery if removed from SM background
- Single top: somewhat less sensitive than targeted search
- Higgs: less sensitive than targeted search

Sensitivity to Specific New Physics Models

- Inject signal into pseudo-data drawn from SM prediction
 - determine cross-section needed to trigger Sleuth's discovery threshold
 - systematic uncertainties not included
- Sensitivity broadly comparable to dedicated searches when signal satisfies Sleuth's basic assumptions
- Sleuth becomes less sensitive as the signal violates these assumptions

Name	Description	Sensitivity (pb)
Model 01	GMSB, $\Lambda = 82.6$ GeV, $\tan \beta = 15$, $\mu > 0$, 1 messenger	0.10 ± 0.04
	of $M = 2\Lambda$	
Model 02	$Z'_{(250 \text{ GeV/c}^2)} \rightarrow \ell \bar{\ell}, \text{ with } \ell \neq \nu$	1.56 ± 0.09
Model 03	$Z'_{(700~{ m GeV/c^2})} ightarrow qar{q}$	4.3 ± 0.8
Model 04	$Z'_{(1{ m TeV}/c^2)} o qar q$	1.67 ± 0.23
Model 05	mSUGRA, $M_0 = 100$ GeV, $M_{1/2} = 180$ GeV, $A_0 = 0$,	2.05 ± 0.18
	$\tan\beta=5,\mu>0$	
Model 06	mSUGRA, $M_0 = 284$ GeV, $M_{1/2} = 100$ GeV, $A_0 = 0$,	1.55 ± 0.10
	$\tan\beta=5,\mu<0$	
Model 07	mSUGRA, $M_0 = 300$ GeV, $M_{1/2} = 200$ GeV, $A_0 = 0$,	0.25 ± 0.09
	$\tan\beta=5,\mu<0$	
Model 08	Standard Model $t\bar{t}$, with $t\bar{t}$ removed from background.	0.30 ± 0.05
	Would need $\sim 40 \text{ pb}^{-1}$ to see.	
Model 09	Standard Model WW, with WW removed from back-	5.7 ± 1.1
	ground. Would need $\sim 400 \text{ pb}^{-1}$ to see.	
Model 10	$MSSM \ A \to \tau\tau, \ M_A = 160 \ \text{GeV}, \ \tan\beta = 5$	13.5 ± 1.9
Model 11	$Z'_{(500 { m GeV}/c^2)} ightarrow t \bar{t}$	2.8 ± 0.9

Systematic Uncertainties in Vista and Sleuth

- The correction model explicitly does not include some sources of systematic uncertainty, eg parton distribution functions or shower parameters
- Other uncertainties relating to detector simulation and object reconstruction are determined within Vista, but not propagated to the calculation of P̃ in Sleuth
- Correction factors are mainly fit to bulk distributions in Vista; potential additional systematic uncertainty associated with the extrapolation of these values to high-p_T is not included
- Sleuth's search for interesting excesses only considers statistical uncertainties on the background; systematic uncertainties on the Σp_T distributions in Sleuth are estimated to be ~10-30%

Now for the data...

P for all Sleuth Final States

If our simplified Standard Model prediction perfectly represented the data, we would expect this to be a uniform distribution

Sleuth's Most Discrepant Final States

Sleuth Results

- Sleuth's assessment of the significance of the largest discrepancy we observed in the data:
 - 46% of hypothetical similar
 experiments drawn from our simplified
 SM prediction would give a larger
 discrepancy
 - we consider discovery threshold = 0.1%
- In 1fb⁻¹ of CDF data, we found no significant (~5 σ) excess of data over SM in the high Σp_{T} distributions
- This is not a proof that there is no new physics present in these data

Sleuth's Top 5 Most Discrepant Final States:

SLEUTH Final State	\mathcal{P}
$b\overline{b}$	0.0055
j p/	0.0092
$\ell^+\ell'^+ pjj$	0.011
$\ell^+\ell'^+ \not p$	0.016
τp	0.016

Conclusions

- Vista attempts to understand the bulk features of high- p_{T} data in terms of the Standard Model
- Sleuth searches for new physics appearing as an excess of data at high Σp_{T} relative to SM backgrounds
- With these model-independent techniques, no significant (~5σ) excess was found that might indicate new physics in 1 fb⁻¹
- This is not a claim that there is no new physics present in our data

Future Plans

- The Tevatron expects to collect factor 5-8 more data
- Additional discrepancies that are seen will entail further improvements in our correction model
- The search for new physics at CDF using this global search technique in parallel with dedicated searches will continue with enthusiasm!

	\mathbf{Code}	Category	Explanation	Value	Error	Error(%)
	5001	luminosity	CDF integrated luminosity	927.1	20	2.2
	5102	k-factor	cosmic_ph	0.686	0.05	7.3
	5103	k-factor	cosmic_j	0.4464	0.014	3.1
	5121	k-factor	$1\gamma 1$ j photon+jet(s)	0.9492	0.04	4.2
	5122	k-factor	$1\gamma 2 \mathrm{j}$	1.205	0.05	4.1
	5123	k-factor	$1\gamma 3 j$	1.483	0.07	4.7
	5124	k-factor	$1\gamma 4j+$	1.968	0.16	8.1
• The correction	5130	k-factor	$2\gamma 0$ j diphoton(+jets)	1.809	0.08	4.4
	5131	k-factor	$2\gamma 1 \mathrm{j}$	3.417	0.24	7.0
factors shown	5132	k-factor	$2\gamma 2j+$	1.305	0.16	12.3
Tactors shown	5141	k-factor	W0j W (+jets)	1.453	0.027	1.9
1 (* 1 1	5142	k-factor	W1j	1.059	0.03	2.8
are defined and	5143	k-factor	W2j	1.021	0.03	2.9
	5144	k-factor	W3j+	0.7582	0.05	6.6
annligghla only	5151	k-factor	Z0j Z (+jets)	1.419	0.024	1.7
applicable only	5152	k-factor	Z1j	1.177	0.04	3.4
•••	5153	k-factor	Z_{2j+}	1.035	0.05	4.8
within the	5161	k-factor	2j $\hat{p}_T < 150$ dijet	0.9599	0.022	2.3
	5162	k-factor	2j 150< \hat{p}_T	1.256	0.028	2.2
· · · · · · · · · · · · · · · · · · ·	5164	k-factor	3j $\hat{p}_T < 150$ multijet	0.9206	0.021	2.3
context of the	5165	k-factor	$3j \ 150 < \hat{p}_T$	1.36	0.032	2.4
	5167	k-factor	4j $\hat{p}_T < 150$	0.9893	0.025	2.5
Vista correction	5168	k-factor	4j 150< \hat{p}_T	1.705	0.04	2.3
vista concetton	5169	k-factor	5j + low	1.252	0.05	4.0
	5211	misId	$p(e \rightarrow e)$ central	0.9864	0.006	0.6
model	5212	misId	$p(e \rightarrow e)$ plug	0.9334	0.009	1.0
model	5213	misId	$p(\mu \rightarrow \mu)$ CMUP	0.8451	0.008	0.9
	5214	misId	$p(\mu \rightarrow \mu) CMX$	0.915	0.011	1.2
• values and	5216	misId	$p(\gamma \rightarrow \gamma)$ central	0.9738	0.018	1.8
	5217	misId	$p(\gamma \rightarrow \gamma)$ plug	0.9131	0.018	2.0
Arrore are	5219	misId	$p(b \rightarrow b)$ central	0.9969	0.04	4.0
chois are	5245	misId	$p(e \rightarrow \gamma)$ plug	0.04452	0.012	27.0
1 1 0	5256	misId	$p(q \rightarrow e)$ central	9.71×10^{-5}	1.9×10^{-6}	2.0
obtained from	5257	misId	$p(q \rightarrow e)$ plug	0.0008761	1.8×10^{-5}	2 1
	5261	miald	$p(q \to u)$	1.157×10^{-5}	2.7×10^{-7}	2.1
alabel fit to date	0201 5979	misid	$p(q \rightarrow \mu)$ $p(i \rightarrow h) 25 < \hat{n}$	0.01694	2.7 X 10 0.00097	2.0
global III to data	5213	miald	$p(J \rightarrow b) 23 < p_T$ $p(T \rightarrow b) 15 < \hat{m} - < 60$	0.01064	0.00021	1.0
-	5265	inisia	$p(q \rightarrow \tau) 15 \langle p_T \langle 00 \rangle$	0.003414	0.00012	3.0
(including	5286	misld	$p(q \rightarrow \tau) 60 < p_T < 200$	0.000381	4×10 5	10.5
(meruanig	5292	misId	$p(q \rightarrow \gamma)$ central	0.0002651	1.5×10^{-5}	5.7
• • • •	5293	misId	$p(q \rightarrow \gamma)$ plug	0.001591	0.00013	8.2
constraints)	5401	trigger	$p(e \rightarrow trig)$ central, $\hat{p}_T > 25$	0.9758	0.007	0.7
	5402	trigger	$p(e \rightarrow trig) plug, \hat{p}_T > 25$	0.835	0.015	1.8
	5403	trigger	$p(\mu \rightarrow trig)$ CMUP, $\hat{p}_T > 25$	0.9166	0.007	0.8
Conor Henderson	5404	trigger	$p(\mu \rightarrow trig) CMX, \hat{p}_T > 25$	0.9613	0.01	1.0

Constrained Correction Factors

Category	Explanation		Category	Explanation	
luminosity	CDF integrate	ed luminosity			
k-factor	cosmic_ph	ý	misId	p(e-≻e)	central
k-factor	cosmic_j		misId	p(e-≻e)	plug
k-factor	1ph1j	<pre>photon+jet(s)</pre>	misId	p(mu->mu)	CMUP
k-factor	1ph2j		misId		CMX
k-factor	1ph3j		misId	p(ph->ph)	central
k-factor	1ph4j+		misId	p(ph->ph)	plug
k-factor	2ph0j 2ph1j	diphoton(+jets)	misId	p(b->b)	central
k-factor	2ph1j 2ph2j+		misId	p(e->ph)	olug
k-factor	WOi	W (+jets)	misTd	т(а- > е)	central
k-factor	W1j	·····	misId	$p(q \rightarrow o)$	blug
k-factor	W2j		miald	p(q >e)	hruß
k-factor	W3j+		misic misic	p(q->mu)	
k-factor	ZOJ	Z (+jets)	misia	p(j->b)	25 <pt< td=""></pt<>
k-factor	Z1j		misld	p(q->tau)	15 <pt<60< td=""></pt<60<>
k-factor	Z2j+		misId	p(q->tau)	60 < pt<200
k-factor	2j pt<150	dijet	misId	p(q->ph)	central
k-factor	2j 150 <pt< td=""><td></td><td>misId</td><td>p(q->ph)</td><td>plug</td></pt<>		misId	p(q->ph)	plug
k-factor	3j pt<150	multijet	trigger	p(e->trig)	central, pt>25
k-factor	3j 150 <pt< td=""><td></td><td>trigger</td><td>p(e->trig)</td><td>plug. pt>25</td></pt<>		trigger	p(e->trig)	plug. pt>25
R-Iactor	4j pt<150		trigger	p(mu->trig)	CMIIP $pt>25$
k-lactor	4j IDUNPU 5j+ lov		+++idder	p(mu > trig)	CMX + 25
K-Iactor	<i>5</i>]∓ 10₩		or TRRet	h/mm >or rR)	ora, pozzo

Has external constraint

Part of inclusive constraint

Conor Henderson

Vista Correction Factor Constraints

Code	Description	Value	$\sigma_{ m fit}$	$\mu_{ m constraint}$	$\sigma_{ m constraint}$	$\frac{value - \mu}{\sigma_{constraint}}$
5001	luminosity	927.1	20	901.9	53.11	0.47
5161	k -factor, 2j $\hat{p}_T < 150$	0.96	0.02	1.100	0.050	-2.8
5162	k -factor, 2j 150 $< \hat{p}_T$	1.26	0.03	1.330	0.050	-1.4
5211	misId, $p(e \rightarrow e)$ central	0.99	0.01	0.981	0.007	1.29
5212	misId, $p(e \rightarrow e)$ plug	0.93	0.01	0.940	0.010	-1
5216	misId, $p(\gamma \rightarrow \gamma)$ central	0.97	0.02	0.990	0.020	-1
5217	misId, $p(\gamma \rightarrow \gamma)$ plug	0.91	0.02	0.910	0.020	0
5219	misId, $p(b \rightarrow b)$ central	1	0.04	0.874	0.080	1.58
5285	misId, $p(q \rightarrow \tau)15 < \hat{p}_T < 60$	3.4×10^{-3}	1.0×10^{-4}	0.004	0.0004	-1.5
5401	trigger, $p(e \rightarrow trig)$ central, $\hat{p}_T > 25$	0.98	0.01	0.970	0.010	1
5403	trigger, $p(\mu \rightarrow trig)$ CMUP, $\hat{p}_T > 25$	0.92	0.01	0.908	0.010	1.2
5404	trigger , $p(\mu \rightarrow trig) \text{ CMX}, \hat{p}_T > 25$	0.96	0.01	0.954	0.015	0.4

Plus inclusive constraints on: W+jets; Z+jets; (di)photon+jets

Vista Examples: Muon Fakes

Vista Example: Tau Fakes

'Sophisticated' Variables: Top Quark Mass

Vista: Non-collision Background

• Estimate non-collision background from events with no tracks

• Can describe flat cosmic ray contribution and beam halo spike at phi=0 Conor Henderson 46

Vista@LHC

- Vista proposed as commissioning tool for LHC experiments
- Global comparison to Standard Model predictions will validate essential detector understanding before claiming any discovery

Sleuth Partition Rules

- Vista final states are merged in Sleuth to enhance signal/background
- Assumes that new physics will:
 - treat first 2 generations equivalently
 - be symmetric with respect to global charge conjugation
 - produce jets in pairs
 - conserve lepton flavour number

P from Pseudo-Experiments

The expected distribution of \tilde{P} from pseudo-experiments drawn from the SM implementation is uniform

Sleuth's #4 and #5 Final States

Influence of Systematics on Result

Effect of a normalization systematic uncertainty on P
, for top 3
 Sleuth final states:

• For low population final states, statistics dominate over syst. uncertainty

Estimation of Systematic Uncertainties

Vista correction factors represent sources of systematic uncertainty
Uncertainties in

correction factor values obtained from Vista global fit

For a particular final state, add in quadrature the appropriate contributions
Estimate ~10% total systematic uncertainty on

Sleuth backgrounds

Grey box –
Sleuth sensitivity
White box -
dedicated search

This is the crosssection required to produce a 5σ discovery

Syst. errors not considered for Sleuth or for the dedicated search

Conor Henderson

Model 01 GMSB, $\Lambda = 82.6 \text{ GeV}$, $\tan \beta = 15$, $\mu > 0$, 1 messenger of $M = 2\Lambda$	0.22 in (pb)
	8 (pb)
Model 02 $Z'_{(250 \mathrm{GeV/c^2})} \rightarrow \ell \bar{\ell}, \text{ with } \ell \neq \nu$	in (P2)
Model 03 $Z'_{(700 \text{GeV/c}^2)} \to q\bar{q}$.5 _{in} (pb)
Model 04 $Z'_{(1 \text{ TeV/c}^2)} \rightarrow q\bar{q}$	2.1 _{in} (pb)
Model 05 mSUGRA, $M_0 = 100 \text{ GeV}, M_{1/2} = 180 \text{ GeV},$ $A_0 = 0, \tan \beta = 5, \mu > 0$	3 _{in} (pb)
Model 06 mSUGRA, $M_0 = 284 \text{ GeV}, M_{1/2} = 100 \text{ GeV},$ $A_0 = 0, \tan \beta = 5, \mu < 0$	2 _{in} (pb)
Model 07 mSUGRA, $M_0 = 300 \text{ GeV}, M_{1/2} = 200 \text{ GeV},$ $A_0 = 0, \tan \beta = 5, \mu < 0$.2 _{in} (pb)
Model 08 Standard Model $t\bar{t}$, with $t\bar{t}$ removed from background. Would need ~ 40 pb ⁻¹ to see.	38 0.4 _{in} (pb)
Model 09 Standard Model WW , with WW removed from background. Would need ~ 400 pb ⁻¹ to see.	7.5 _{in} (pb)
Model 10 MSSM $A \to \tau \tau$, $M_A = 160$ GeV, $\tan \beta = 5$	18 in (pb)
Model 11 $Z'_{(500 \text{ GeV/c}^2)} \to t\bar{t}$	4.5 _{in} (pb)

Potential Analysis Improvements

- Incorporate more CDF data (x2)
- Combine with similar D0 effort (x2)

- Minor improvements (x1.1):
 - more sophisticated object identification
 - more expansive offline triggers

Sleuth Publications

Sleuth previously used in searches at D0 and H1:

D0, Phys. Rev. Lett. 86, 3712 (2001)
D0, Phys. Rev. D 62, 092004 (2000)
D0, Phys. Rev. D 64, 012004 (2001)
H1, Phys. Lett. B 602, 14 (2004)

