Experimental Particle Physics Seminar University of Pennsylvania, October 17, 2007

Search for Flavor Changing Neutral Currents in Top Quark Decays at CDF

Ulrich Husemann Yale University

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Top Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Fop Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

Standard Model of Particle Physics

- Matter in the standard model: 12 fermions in three generations
 - Six quarks and their anti-particles
 - Six leptons and their anti-particles
- Forces in the standard model:
 - Strong force (carrier: gluon)
 - Electroweak force (carriers: photon, W[±] bosons, Z boson)
- Interactions can be described by "currents" coupling to gauge bosons, e.g. electromagnetic current

Flavor Changing Neutral Currents

- Flavor changing neutral current (FCNC) interactions:
 - Transition from a quark of flavor A and charge Q to quark of flavor B with the same charge Q
 - Examples: $b \rightarrow s\gamma$, $t \rightarrow cH$, ...
- 1960s: only three light quarks (u,d,s) known, mystery in neutral kaon system:

- Solution: "GIM Mechanism" (Glashow, Iliopoulos, Maiani, 1970)
 - Fourth quark needed for cancellation in box diagram: prediction of charm quark
 - Cancellation would be exact if all quarks had the same mass: estimate of charm quark mass

Standard model: no FCNC at Lagrangian level

Massless theory: weak neutral current is flavor-diagonal

$$J_{\mu}^{\rm NC} = J_{\mu}^3 - 2\sin^2\theta_{\rm W}j_{\mu}^{\rm em} = \bar{u}\left[\frac{1}{2}\gamma_{\mu}\left(1 - \gamma_5\right) - \frac{4}{3}\sin^2\theta_{\rm W}\gamma_{\mu}\right]u - \bar{d}\left[\frac{1}{2}\gamma_{\mu}\left(1 - \gamma_5\right) - \frac{2}{3}\sin^2\theta_{\rm W}\gamma_{\mu}\right]d$$

- Quark masses via Higgs mechanism:
 - Eigenstates of electroweak interactions are not mass eigenstates

$$\mathscr{L}_{Yuk} = -\frac{m_u^{\alpha\beta}}{\mu_L^{\prime\alpha}} \frac{\bar{u}_L^{\prime\alpha} u_R^{\prime\beta} - m_d^{\alpha\beta}}{\mu_L^{\prime\alpha}} \frac{\bar{d}_L^{\prime\alpha} d_R^{\prime\beta}}{\bar{d}_L^{\prime\alpha}} - \frac{1}{\sqrt{2}} f_u^{\alpha\beta} u_L^{\prime\alpha} h(x) u_R^{\prime\beta} - \frac{1}{\sqrt{2}} f_d^{\alpha\beta} d_L^{\prime\alpha} h(x) d_R^{\prime\beta} + \text{h.c.}$$
Mass Terms
Higgs Couplings

• Unitary transformation of Lagrangian to mass basis, i.e. for physical particles:

$\bar{u}_{\mathrm{L}} = \bar{u}_{\mathrm{L}}' \mathbf{U}_{\mathrm{L}}^{u}$	$u_{\rm R} = \mathbf{U}_{\rm R}^{u\dagger} u_{\rm R}'$	$\mathbf{m}_u = \mathbf{U}_{\mathrm{L}}^{u\dagger} \mathbf{m}'_u \mathbf{U}_{\mathrm{R}}^u$
$\bar{d}_{\mathrm{L}} = \bar{d}'_{\mathrm{L}} \mathbf{U}^{d}_{\mathrm{L}}$	$d_{\mathrm{R}} = \mathbf{U}_{\mathrm{R}}^{d\dagger} d_{\mathrm{R}}^{\prime}$	$\mathbf{m}_d = \mathbf{U}_{\mathrm{L}}^{d\dagger} \mathbf{m}_d' \mathbf{U}_{\mathrm{R}}^d$

- Kinetic terms: unchanged
- Higgs couplings proportional to mass terms: no flavor changing Higgs couplings
- Neutral currents have same structure as kinetic terms: unchanged \rightarrow no FCNC

Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix (obtained from transformation of charged current to mass basis):

$$J_{\mu}^{\text{CC}} = \bar{u}' \left(\frac{1}{2} \gamma_{\mu} \left(1 - \gamma_{5} \right) \right) d' = \bar{u}'_{\text{L}} \gamma_{\mu} d'_{\text{L}} = \bar{u}_{\text{L}} \mathbf{U}_{\text{L}}^{u\dagger} \gamma_{\mu} \mathbf{U}_{\text{L}}^{d} d_{\text{L}} = \bar{u}_{\text{L}} \gamma_{\mu} \mathbf{V}_{\text{CKM}} d_{\text{L}},$$

• CKM matrix: unitary 3×3 matrix $\mathbf{V}_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$ with $\mathbf{V}_{CKM} \cdot \mathbf{V}_{CKM}^{\dagger} = \mathbf{V}_{CKM}^{\dagger} \cdot \mathbf{V}_{CKM} = \mathbf{1}$

yields unitarity relations, e.g. the unitary triangle of flavor physics (1st vs. 3rd column) $V_{ud}^*V_{ub} + V_{cd}^*V_{cb} + V_{td}^*V_{tb} = 0$ or (used in top FCNC): $V_{cd}^*V_{td} + V_{cs}^*V_{ts} + V_{cb}^*V_{tb} = 0$

FCNC are allowed via higher order mechanisms such as penguin diagrams, but heavily suppressed

- Suppression mechanism 1: GIM
 - Penguin matrix element depends on universal functions of single parameter $x_i = m_i^2/m_W^2$

 $\mathscr{M} \propto F(x_{\rm d}) V_{\rm cd}^* V_{\rm td} + F(x_{\rm s}) V_{\rm cs}^* V_{\rm ts} + F(x_{\rm b}) V_{\rm cb}^* V_{\rm tb},$

• Compare to CKM unitarity relation:

 $V_{cd}^* V_{td} + V_{cs}^* V_{ts} + V_{cb}^* V_{tb} = 0$

Exact cancellation if masses of b, s, and d quarks were the same

- Quark masses more similar for down-type than for up-type: top FCNC more strongly suppressed than bottom FCNC, e.g. BR(t \rightarrow Zq) $\approx 10^{-14}$ vs. BR(b \rightarrow sy) $\approx 10^{-4}$
- Suppression mechanism 2: smallness of relevant CKM matrix elements $|V_{cd}^*V_{td}| \approx 0.002, |V_{cs}^*V_{ts}| \approx 0.04, |V_{cb}^*V_{tb}| \approx 0.04$

FCNC are enhanced in many models of physics beyond the SM

- Enhancement mechanisms:
 - FCNC interactions at tree level
 - Weaker GIM cancellation by new particles in loop corrections
- Examples:
 - New quark singlets: Z couplings not flavor-diagonal → tree level FCNC
 - Two Higgs doublet models: modified Higgs mechanism
 - Flavor changing Higgs couplings allowed at tree level
 - Virtual Higgs in loop corrections
 - Supersymmetry: gluino/neutralino and squark in loop corrections

FCNC are enhanced in many models of physics beyond the SM

- Enhancement mechanisms:
 - FCNC interactions at tree level
 - Weaker GIM cancellation by new particles in loop corrections
- Examples:
 - New quark singlets: Z couplings not flavor-diagonal → tree level FCNC
 - Two Higgs doublet models: modified Higgs mechanism
 - Flavor changing Higgs couplings allowed at tree level
 - Virtual Higgs in loop corrections
 - Supersymmetry: gluino/neutralino and squark in loop corrections

FCNC are enhanced in many models of physics beyond the SM

- Enhancement mechanisms:
 - FCNC interactions at tree level
 - Weaker GIM cancellation by new particles in loop corrections
- Examples:
 - New quark singlets: Z couplings not flavor-diagonal → tree level FCNC
 - Two Higgs doublet models: modified Higgs mechanism
 - Flavor changing Higgs couplings allowed at tree level
 - Virtual Higgs in loop corrections
 - Supersymmetry: gluino/neutralino and squark in loop corrections

- Experimental tests of FCNC interactions: sensitive probes of new physics
 - Any signal above SM expectations would indicate new physics
 - Measurements constrain allowed phase space for new physics models
- Two types of searches for FCNC in the top sector:
 - Search for single top production (LEP, HERA, DØ)
 - Search for top quark decay via FCNC (CDF)
- Experiments usually report limits on
 - Branching fractions for specific processes, e.g. $BR(t \rightarrow Zq)$
 - Coupling parameters of effective Lagrangian, e.g. for tZq coupling

$$\mathscr{L}_{\text{eff}} = -\frac{g}{2\cos\theta_W} \cdot \frac{\kappa}{\kappa} \cdot \left(x_L \cdot \bar{q}_L \gamma_\mu t_L + x_R \cdot \bar{q}_R \gamma_\mu t_R \right) Z^\mu + \dots$$

- CDF Run I search:
 F. Abe *et al.*, PRL 80 (1998) 2525.
 - Signature: $Z \rightarrow I^+I^- + 4$ jets (1 b-jet)
 - Limit on BR(t \rightarrow Zq): 33%

• LEP searches:

- P. Achard *et al.* (L3), Phys. Lett. **B549** (2002) 290.
- G. Abbiendi *et al.* (Opal), Phys. Lett. **B521** (2001) 181.
- J. Abdallah *et al.* (Delphi), Phys. Lett. **B590** (2004) 21.
- A. Heister et al. (Aleph), Phys. Lett. B453 (2002) 173.
- Hadronic top decay (4 jets) or semileptonic top decay (2 jets & lepton)
- Very similar results among all LEP experiments, best limit on BR(t→Zq):13.7% (L3)

• HERA searches:

- A. Aktas et al. (H1), Eur. Phys. J. C33 (2004) 9.
- S. Chekanov et al. (ZEUS), Phys. Lett. B559 (2003) 153.
- Hadronic top decay (3 jets) or semileptonic top decay (lepton & jet)
- Most sensitive to tγq vertex, preference for u over c quarks (proton sea)

Best Limits 2006

The H1 result caused some excitement:

Abstract. [...] In the leptonic channel, 5 events are found while 1.31 ± 0.22 events are expected from the Standard Model background. In the hadronic channel, no excess above the expectation for Standard Model processes is found. [...]

DØ 2007: Single Top via FCNC

• Study single Top production via FCNC:

- Artificial neural network to discriminate signal from background
- World's best limit on t-c-g and t-u-g couplings $(\kappa/\Lambda)^2 \rightarrow$ previous limits improved by order of magnitude

[V. M. Abazov et al., hep-ex/0702005, submitted to PRL]

14

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Fop Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

[Fermilab Visual Media Service]

- Proton-antiproton collider: $\sqrt{s} = 1.96$ TeV
- 36×36 bunches, collisions every 396 ns
- Record instantaneous peak luminosity: 292 µb⁻¹ s⁻¹ (1 µb⁻¹ s⁻¹ = 10³⁰ cm⁻² s⁻¹)
- Luminosity goal:
 5.5–6.5 fb⁻¹ of integrated luminosity by 2009, running in 2010 currently under discussion
- Two multi-purpose detectors: CDF and DØ

- Tevatron continues to perform very well:
 - More than 3 fb⁻¹ delivered up to Summer 2007 shutdown
 - More than 2.5 fb⁻¹ recorded by CDF

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Top Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

Brief history of top quark discovery:

- 1977: Y discovery bottom quark
- 1980s: Searches for "light" top (mass smaller than W boson mass) as isospin partner of bottom at PETRA, SppS, LEP, CDF Run 0
- 1992/3: Tevatron Run I starts, first indications for top quark production
- March 2, 1995: CDF and DØ announce top quark discovery

The Discovery of the Top Quark

Finding the sixth quark involved the world's most energetic collisions and a cast of thousands

by Tony M. Liss and Paul L. Tipton

[Scientific American, September 1997]

VIOLENT COLLISION between a proton and an antiproton (*center*) creates a top quark (*red*) and an antitop (*blue*). These decay to other particles, typically producing a number of jets and possibly an electron or positron.

- The top is heavy: $m_t \approx 170 \text{ GeV}/c^2$ (40× m_b , approx. mass of gold atom)
- Mass close to scale of electroweak symmetry breaking (EWSB), top Yukawa coupling *f* ≈1:

$$\mathscr{L}_{\mathrm{Yuk},t} = f \frac{v}{\sqrt{2}} \, \overline{t}_L t_R \equiv m_t \, \overline{t}_L t_R$$

(vacuum expectation value of Higgs field: $v/\sqrt{2} \approx 178 \text{ GeV}$) → Important role in EWSB models

Top is the only "free" quark: lifetime shorter than hadronization time

$$\tau = \frac{1}{\Gamma} \approx \frac{1}{1.5 \,\text{GeV}} < \frac{1}{\Lambda_{\text{QCD}}} \approx \frac{1}{0.2 \,\text{GeV}}$$

- \rightarrow No spectroscopy of bound states
- \rightarrow Spin transferred to decay products

Top Pair Production at the Tevatron

	$W \rightarrow$	hadrons	τ	μe
hadrons	, (All Hadronic S/B ≈ 0.04)	Lepton+ τ	Lepton + Jets (S/B ≈ 1)
Ч		Lepton+ τ		
Μ⁺ μ Β	Le	epton + Jets (S/B ≈ 1)		Dilepton $(S/B \approx 3)$

- Top decay in the Standard Model: t → Wb (BR ≈ 100%)
- tt decay signatures characterized by W decays:
 - All-Hadronic (45% of all decays)
 - Lepton+Jets (30% of all decays)
 - Dilepton (5% of all decays)
- Main background process: production of W bosons in association with Jets
- tt events contain two b quarks:
 b quark identification ("b-tagging") crucial

Single	σ _{tt} = 8.2 ± 0.5 (stat) ±
B-Tag	0.8 (syst) ± 0.5 (lum) pb
Double	σ _{tt} = 8.8 ± 0.8 (stat) ±
B-Tag	1.2 (syst) ± 0.5 (lum) pb

24

CDF's Top Properties Program

- From top discovery in 1995 to precision physics in 2007:
 - Dataset: 1000s of top events
 - Mass & cross section very precisely measured
 - Evidence for single top production
- Broad program to study properties of the top quark: production, decay, quantum numbers, ...
- Measurements of top properties try to answer:

Is the top really the Standard Model top?

25

What are Flavor Changing Neutral Currents?

The CDF Experiment at the Tevatron

Fop Quark Physics at CDF

Search for FCNC in Top Quark Decays

Summary & Conclusions

- Basic question: how often do top quarks decay into Zq?
 \rightarrow set limit on branching fraction BR(t \rightarrow Zq)
- Selection of decay channels for $t\bar{t} \rightarrow Zq$ Wb:
 - Z → charged leptons: very clean signature, lepton trigger
 - W → hadrons: large branching fractions, no neutrinos
 → event can by fully reconstructed
 - Final signature: Z + ≥4 jets

Analysis Outline:

- I. Baseline Event Selection
- II. Initial Background Estimate
- **III.** Optimization of Event Selection
- IV. Systematic Uncertainties
- V. Final Limit Calculation

Blind Analysis

- Event signature: $Z \rightarrow I^+I^- + 4$ jets
- Motivation for blind analysis: avoid biases by looking into the data too early
- Blinding & unblinding strategy:
 - Initial blinded region: $Z + \ge 4$ jets
 - Later: add control region in Z + ≥ 4 jets from kinematic constraints
 - Optimization of event selection, prediction of backgrounds, and systematic uncertainties on data control regions and Monte Carlo (MC) simulation only
 - Very last step: "opening the box", i.e. look into signal region in data

• Monte Carlo (MC) simulation of FCNC decay t \rightarrow Zq with PYTHIA

- $t \rightarrow Zq$ vertex unknown to PYTHIA
- Decay generated flat in cos θ* (angle between top boost direction and lepton of same charge sign from Z decay, in Z rest frame)

• Solution: reweight according to expectation from standard model Higgs mechanism: $\frac{d\sigma}{d\cos(\theta^*)} = f^0 \cdot \frac{3}{4} \left(1 - \cos(\theta^*)^2\right) + f^- \cdot \frac{3}{8} \left(1 - \cos(\theta^*)\right)^2 + f^+ \cdot \frac{3}{8} \left(1 + \cos(\theta^*)\right)^2$ with $f^0 = 0.65$ ("longitudinal), $f^- = 0.35$ ("left-handed"), $f^+ = 0$ ("right-handed")

• Main FCNC signal sample: one top decays $t \rightarrow Zc$, other decays $t \rightarrow Wb$

- Additional sample required for decay $t \rightarrow Zu$
- Additional sample for "double FCNC" events, i.e. both tops decay via FCNC t \rightarrow Zq

Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC

30

Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC

Search for FCNC: Ingredients

- Simple trigger: single electron or muon, transverse momentum >18 GeV/c
- Sharp Z resonance, good lepton momentum resolution \rightarrow cut on lepton pair invariant mass: 76 GeV/ $c^2 < M_{\parallel} < 106$ GeV/ c^2
- Enhancing the Z acceptance:
 - Tracking systems have better coverage than calorimeter and muon detectors: allow second lepton to be isolated track
 → doubles acceptance w.r.t. standard lepton selection
 - Electron tracks lose momentum via bremsstrahlung: correct track momentum with calorimeter energy → 3% more dielectron pairs

Adding Jets

- FCNC: four jet assignments
 - 1 b-jet from $t \rightarrow Wb$ decay
 - 2 jets from subsequent W decay
 - 1 jet from $t \rightarrow Zq$ decay
- For all 12 possible combinations of first four jets in the event:
 - 1. Combine jets #1 and #2 to W, calculate invariant mass *m*_{W,rec}
 - 2. Vary momenta of jets #1 and #2 within their resolutions to match PDG W mass ("fix W mass")
 - 3. Add jet #3 to fixed W, calculate invariant mass $m_{t \rightarrow Wb, rec}$
 - Vary momenta of leptons within their resolutions to match PDG Z mass ("fix Z mass")
 - 5. Add jet #4 to fixed Z, calculate invariant mass $m_{t \rightarrow Zq, rec}$

• Widths reflect mass resolutions as measured in MC simulation: $\sigma_{W,rec} = 15 \text{ GeV}/c^2$, $\sigma_{t \rightarrow Wb,rec} = 24 \text{ GeV}/c^2$ $\sigma_{t \rightarrow Zq,rec} = 21 \text{ GeV}/c^2$

- How do you search for a signal that is likely not there? Understand the background!
- Standard model processes that can mimic Z + ≥4 jets signature:
 - Z+Jets: Z boson production in association with jets
 → dominant background for top FCNC search, most difficult to estimate
 - Standard model tt
 t
 production
 → small background
 - Dibosons: WZ and ZZ diboson production \rightarrow small background
 - W+Jets, WW: negligible
- Top FCNC background estimate: mixture of data driven techniques and MC predictions

- How do you search for a signal that is likely not there? Understand the background!
- Standard model processes that can mimic Z + ≥4 jets signature:
 - Z+Jets: Z boson production in association with jets
 → dominant background for top FCNC search, most difficult to estimate
 - Standard model tt
 t
 f
 production
 → small background
 - Dibosons: WZ and ZZ diboson production \rightarrow small background
 - W+Jets, WW: negligible
- Top FCNC background estimate: mixture of data driven techniques and MC predictions

Standard Model tt Production

- Small background: no real Z, need extra jets from gluon radiation and/or "fake lepton"
 - Dilepton channel (tt̄ → Wb Wb → Ivb Ivb): dilepton invariant mass can fall into Z mass window
 - Lepton+Jets channel (tt̄ → Wb Wb → lvb qq'b): misreconstruct one jet as a lepton ("fake"), invariant mass of lepton and fake lepton can fall into Z mass window
- Large fraction of heavy flavor jets: more important in b-tagged samples
- Estimated from MC simulation

- How do you search for a signal that is likely not there? Understand the background!
- Standard model processes that can mimic Z + ≥4 jets signature:
 - Z+Jets: Z boson production in association with jets
 → dominant background for top FCNC search, most difficult to estimate
 - Standard model tt
 t
 production
 → small background
 - Dibosons: WZ and ZZ diboson production → small background
 - W+Jets, WW: negligible
- Top FCNC background estimate: mixture of data driven techniques and MC predictions

Diboson Production: WZ, ZZ

- Small background (similar in size to standard model tt production)
 - Small cross section but real Z
 - Need extra jets from gluon radiation
- ZZ: Heavy flavor contribution from Z→bb̄ decay
- Estimated from MC simulation

Z+Jets Production

MC tool for Z+Jets: ALPGEN

- Modern MC generator for multiparticle final states
- "MLM matching" prescription to remove overlap between jets from matrix element and partons showers
- Comparing ALPGEN with data:
 - Leading order generator: no absolute prediction for cross section
 - Underestimate of number of events with large jet multiplicities, large uncertainties
- Our strategy: only shapes of kinematic distributions from MC, normalization from control samples in data

35

• Mass χ^2 : combination of mass constraints – best discriminator

$$\chi^{2} = \left(\frac{m_{W,\text{rec}} - m_{W,\text{PDG}}}{\sigma_{W,\text{rec}}}\right)^{2} + \left(\frac{m_{t \to Wb,\text{rec}} - m_{t,\text{PDG}}}{\sigma_{t \to Wb}}\right)^{2} + \left(\frac{m_{t \to Zq,\text{rec}} - m_{t,\text{PDG}}}{\sigma_{t \to Zq}}\right)^{2}$$

Transverse mass: FCNC top decays are more central than Z+jets

$$M_T = \sqrt{\left(\sum E_T\right)^2 - \left(\sum \vec{p}_T\right)^2}$$

 Jet transverse energies: FCNC signal has four "hard" jets, background processes: jets have to come from gluon radiation

To B-Tag or not to B-Tag?

- Advantage of requiring b-tag: Better discrimination against main Z+jets background (heavy flavor backgrounds rather small: SM tt̄, Zbb̄ + jets)
- Disadvantage: Reduction of data sample size
- Solution: use both!
 - Split sample in tagged and anti-tagged
 - Optimize cuts individually for tagged and anti-tagged samples
 - Combine samples in limit calculation
- Main difficulty of this approach: event migration between samples
 - Systematics may be correlated or anticorrelated between samples
 - Taken into account in limit calculation

- Question: best choice for cut values?
- Goal: derive limit on branching fraction of FCNC process $t \rightarrow Zq$
- No prediction for amount of signal: "signal over background" et al. do not work
- Solution: optimize cuts for best expected limit (assuming no signal)

 $\sum_{n_{\rm obs}} P(n_{\rm obs}|n_{\rm back}) \cdot \operatorname{Lim}(n_{\rm obs}|A, n_{\rm back})$

- P: Poisson probability
- L: any limit calculation method
- Our analysis: faster objective Bayesian limits for optimization, "better" Feldman-Cousins limits for final result (both including systematic uncertainties)
- Correlations among variables: multi-dimensional optimization

Final Event Selection

Kinematic Variable	Optimized Cut
Z Mass	\in [76,106] GeV/ c^2
Leading Jet E_T	$>40\mathrm{GeV}$
Second Jet E_T	$> 30 \mathrm{GeV}$
Third Jet E_T	> 20 GeV
Fourth Jet E_T	> 15 GeV
Transverse Mass	$> 200 \mathrm{GeV}$
$\sqrt{\chi^2}$	< 1.6 (<i>b</i> -tagged)
	< 1.35 (anti-tagged)

Background: Putting it all Together

- Total background prediction from control region in data: 130 ± 28 events
 - Tail of mass χ^2 distribution
 - Average of cuts at $\sqrt{\chi^2}$ = 3.0, 3.2
- Tagging rate: 15% ± 4%
 - Tail of mass χ^2 : 16% ± 7% (small sample \rightarrow large uncertainties)
 - MC prediction of tagging rate: 11% (but: 30% too low for Z+≤ 3 Jets)
 - Template fit of MC tagging probabilities vs. number of jets: 14%

Source	Without <i>b</i> -tag	Loose SECVTX b-tag
Z+Jets	123.3±28	17.6±6
Standard Model $t\bar{t}$	$2.4{\pm}0.3$	$1.7{\pm}0.2$
Diboson (WZ , ZZ)	4.3 ± 0.2	$0.7{\pm}0.1$
WW, W+Jets	< 0.1	negligible
Total Backgrounds:	130±28	20±6

- Question: how to get from event counts to limit on BR(t→Zq)?
 - Circular dependency #1: Limit calculation requires knowledge of signal acceptance, but signal acceptance depends on limit
 - Circular dependency #2: Measure limit on fraction of tt production cross section, but cross section changes with changing FCNC contribution
- Solution: "running acceptance" functional form of above dependencies implemented in limit machinery
 - Signal acceptance dynamically adjusted as a function of BR(t→Zq)
 - Signal normalized to measured tt
 production cross section measurement
 - $t\bar{t}$ cross section re-interpreted as a function of BR(t \rightarrow Zq) to allow for FCNC contribution

- Signal count: probability for one or both tops to decay via FCNC $\mathscr{P}(t\bar{t} \rightarrow ZcWb, ZcZc,...)$
- Normalization to double-tagged tt cross section measurement:
 - Double-tagged: smallest overlap between acceptances
 - Luminosity uncertainties cancel, other uncertainties reduced

$$\mathscr{B}_Z \equiv \mathscr{B}(t \to Zc) = 1 - \mathscr{B}(t \to Wb)$$

- $\mathscr{A}_{WZ} \equiv \text{FCNC Acceptance}$
- $\mathscr{A}_{ZZ} \equiv$ Double FCNC Acceptance
- $\mathscr{A}_{LJ_{WW}} \equiv L+J$ Acceptance for SM $t\bar{t}$
- $\mathscr{A}_{LJ_{WZ}} \equiv L+J$ Acceptance for FCNC

$$\mathscr{A}_{LJ_{ZZ}} \equiv L+J$$
 Acceptance for Double FCNC

$$K_{ZZ/WZ} \equiv \mathscr{A}_{ZZ}/\mathscr{A}_{WZ}$$
$$\mathscr{R}_{WZ/WW} \equiv \mathscr{A}_{LJ_{WZ}}/\mathscr{A}_{LJ_{WW}}$$

$$\mathscr{R}_{ZZ/WW} \equiv \mathscr{A}_{LJ_{ZZ}}/\mathscr{A}_{LJ_{WW}}$$

Acceptance Master Formula:

$$N_{\text{signal}} = [(\mathscr{P}(t\bar{t} \to WbZc) \cdot \mathscr{A}_{WZ}) + (\mathscr{P}(t\bar{t} \to ZcZc) \cdot \mathscr{A}_{ZZ})] \cdot \sigma_{t\bar{t}} \cdot \int \mathscr{L} dt$$

$$\dots 1/2 \text{ page of algebra.} \dots$$

$$= \mathscr{B}_{Z} \cdot (N_{LJ} - B_{LJ}) \cdot \frac{\mathscr{A}_{WZ}}{\mathscr{A}_{LJww}} \cdot \frac{(2 \cdot (1 - \mathscr{B}_{Z}) + K_{ZZ/WZ} \cdot \mathscr{B}_{Z})}{(1 - \mathscr{B}_{Z})^{2} + 2\mathscr{B}_{Z} \cdot (1 - \mathscr{B}_{Z}) \cdot \mathscr{R}_{wz/ww} + \mathscr{B}_{Z}^{2} \cdot \mathscr{R}_{ZZ/ww}}$$

$$\stackrel{\text{``Running'' Acceptance Correction}$$

- Signal count: probability for one or both tops to decay via FCNC $\mathscr{P}(t\bar{t} \rightarrow ZcWb, ZcZc,...)$
- Normalization to double-tagged tt cross section measurement:
 - Double-tagged: smallest overlap between acceptances
 - Luminosity uncertainties cancel, other uncertainties reduced

$$\mathscr{B}_Z \equiv \mathscr{B}(t \to Zc) = 1 - \mathscr{B}(t \to Wb)$$

- $\mathscr{A}_{WZ} \equiv \text{FCNC Acceptance}$
- $\mathscr{A}_{ZZ} \equiv$ Double FCNC Acceptance
- $\mathscr{A}_{LJ_{WW}} \equiv L+J$ Acceptance for SM $t\bar{t}$
- $\mathscr{A}_{LJ_{WZ}} \equiv L+J$ Acceptance for FCNC

$$\mathscr{A}_{LJ_{ZZ}} \equiv L+J$$
 Acceptance for Double FCNC

40

$$K_{ZZ/WZ} \equiv \mathscr{A}_{ZZ}/\mathscr{A}_{WZ}$$
$$\mathscr{R}_{WZ/WW} \equiv \mathscr{A}_{LJ_{WZ}}/\mathscr{A}_{LJ_{WW}}$$

$$\mathscr{R}_{ZZ/WW} \equiv \mathscr{A}_{LJ_{ZZ}}/\mathscr{A}_{LJ_{WW}}$$

Acceptance Master Formula:

$$N_{\text{signal}} = [(\mathscr{P}(t\bar{t} \to WbZc) \cdot \mathscr{A}_{WZ}) + (\mathscr{P}(t\bar{t} \to ZcZc) \cdot \mathscr{A}_{ZZ})] \cdot \sigma_{t\bar{t}} \cdot \int \mathscr{L} dt$$

$$\dots 1/2 \text{ page of algebra.} \dots$$

$$= \mathscr{B}_{Z} \cdot (N_{LJ} - B_{LJ}) \cdot \mathscr{A}_{WZ} \cdot (2 \cdot (1 - \mathscr{B}_{Z}) + K_{ZZ/WZ} \cdot \mathscr{B}_{Z})$$

$$(1 - \mathscr{B}_{Z})^{2} + 2\mathscr{B}_{Z} \cdot (1 - \mathscr{B}_{Z}) \cdot \mathscr{R}_{WZ/WW} + \mathscr{B}_{Z}^{2} \cdot \mathscr{R}_{ZZ/WW}$$

$$\overset{\text{(Running" Acceptance Correction}}{(1 - \mathscr{B}_{Z})^{2} + 2\mathscr{B}_{Z} \cdot (1 - \mathscr{B}_{Z})} \cdot \mathscr{R}_{WZ/WW} + \mathscr{B}_{Z}^{2} \cdot \mathscr{R}_{ZZ/WW}$$

- Signal systematic evaluated for acceptance ratio A_{WZ}/A_{LJ}
- Distinguish uncertainties: correlated or anti-correlated between selections
 - Correlated: shift anti-tagged & tagged selection into same direction (e.g. lepton SF)
 - Anti-correlated: shift anti-tagged & tagged into opposite directions (e.g. b-tagging)

Systematic Uncertainty	Base Selection (%)	Anti-Tagged (%)	Loose Tag (%)
Lepton Scale Factor	0.5	0.5	0.5
Trigger Efficiency	0.2	0.2	0.2
Jet Energy Scale	3.1	2.6	1.9
ISR/FSR	1.3	2.6	6.5
Helicity Re-Weighting	3.5	3.4	3.2
Parton Distribution Functions	0.9	0.9	0.9
Total Correlated	5.0	5.1	7.5
B-Tagging Scale Factor	10.2	16.3	5.5
Mistag $\alpha\beta$ Correction	0.6	1.0	0.4
$\mathscr{B}(t \to Zc)$ versus $\mathscr{B}(t \to Zu)$	0.0	4.0	4.0
Total Anti-Correlated	10.2	16.8	6.8

- Signal systematic evaluated for acceptance ratio A_{WZ}/A_{LJ}
- Distinguish uncertainties: correlated or anti-correlated between selections
 - Correlated: shift anti-tagged & tagged selection into same direction (e.g. lepton SF)
 - Anti-correlated: shift anti-tagged & tagged into opposite directions (e.g. b-tagging)

Systematic Uncertainty	Base Selection (%)	Anti-Tagged (%)	Loose Tag (%)
Lepton Scale Factor	0.5	0.5	0.5
Trigger Efficiency	0.2	0.2	0.2
Jet Energy Scale	3.1	2.6	1.9
ISR/FSR	1.3	2.6	6.5
Helicity Re-Weighting	3.5	3.4	3.2
Parton Distribution Functions	0.9	0.9	0.9
Total Correlated	5.0	5.1	7.5
B-Tagging Scale Factor	10.2	16.3	5.5
Mistag $\alpha\beta$ Correction	0.6	1.0	0.4
$\mathscr{B}(t \to Zc)$ versus $\mathscr{B}(t \to Zu)$	0.0	4.0	4.0
Total Anti-Correlated	10.2	16.8	6.8

Background Systematics

- Background systematics dominated by yield uncertainties
 - Total background yield: 130 ± 28 (21.5% relative uncertainty)
 - Tagging rate: 15% ± 4% (relative uncertainty: 26.7% tagged, 4.7% anti-tagged)
- Remaining uncertainties: efficiency of χ² cut
 - Ratio of events with $\sqrt{\chi^2} < 1.6$ (signal region) vs. $\sqrt{\chi^2} > 3.0$ (control region)
 - Dominated by choice of MC generator and jet energy scale

Background Systematics

- Background systematics dominated by yield uncertainties
 - Total background yield: 130 ± 28 (21.5% relative uncertainty)
 - Tagging rate: 15% ± 4% (relative uncertainty: 26.7% tagged, 4.7% anti-tagged)
- Remaining uncertainties: efficiency of χ² cut
 - Ratio of events with $\sqrt{\chi^2} < 1.6$ (signal region) vs. $\sqrt{\chi^2} > 3.0$ (control region)
 - Dominated by choice of MC generator and jet energy scale

Opening the box with 1.12 fb⁻¹

- Event yield consistent with background only
- Fluctuated about 1σ high: slightly unlucky
- Result: The World's Best Limit!

 $\mathscr{B}(t \to Zq) < 10.6\%$ @ 95% C.L.

- Expected limit: 7.1% ± 3.0%
- 25% better than L3 (13.7%)
- 3x better than CDF Run I (33%)
- Above results assumes $m_t = 175$ GeV/ c^2 , limit at $m_t = 170$ GeV/ c^2 : BR(t \rightarrow Zq) < 11.2% @ 95% C.L.
- Update with 2 fb⁻¹ and improved method in the works

Selection	Observed	Expected
Base Selection	141	130±28
Base Selection (Tagged)	17	20 ± 6
Anti-Tagged Selection	12	$7.7 {\pm} 1.8$
Tagged Selection	4	$3.2{\pm}1.1$

Mass χ^2 (95% C.L. Upper Limit)

Top FCNC Searches at the LHC

Large Hadron Collider (LHC):

- Proton-proton collider at 14 TeV center-of-mass energy (CERN)
- Two multi-purpuse experiments: ATLAS and CMS
- First data expected in 2008 (2009?)
- Recent ATLAS study on sensitivity for top FCNC
 - Improvement of current limits on BR (t→Zq) by 2–3 orders of magnitude
 - Entering interesting regime of 10⁻⁴ to 10⁻⁵: exclusion of first theoretical models
- Caveat: background model
 - Existing MC tools not tuned to new energy regime
 - Tevatron experience: obtain backgrounds from data

Summary and Conclusions

- Top flavor changing neutral current decays
 - Extremely rare in the standard model
 - Enhanced in theories beyond the standard model → any signal would indicate new physics
- First Tevatron Run II search for FCNC t → Zq in top quark decays
 - Event signature: $Z + \ge 4$ jets
 - Main background process: standard model
 Z + jets production
 - Mass χ^2 to separate signal from background
- No evidence for top FCNC found
 - World's best limit: BR(t→Zq) < 10.6% at 95% C.L.
 - Working on improvements, stay tuned!

Backup Slides

Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC

Typical Top Selection Criteria

Cylindrical coordinate system:

- θ: polar angle w.r.t. to proton direction
- φ: azimuthal angle
- Pseudorapidity: $\eta = -\ln \tan(\theta/2)$
- Transverse energy:

$$\vec{E_T} = \sum_{\text{cal towers}} E_i(\sin \theta_i, \phi_i)$$

 $\vec{E_T} = -\sum_{\text{jets}} \vec{E_T} - \sum_{\text{leptons}} \vec{p_T}$

Missing transverse energy ("MET"):

• Lepton + Jets:
$$t\bar{t} \rightarrow Wb Wb \rightarrow Ivb qq'b$$

- Isolated lepton with $p_T > 20 \text{ GeV}/c$
- Neutrino: missing E_T ("MET") > 20 GeV
- 3 jets within $|\eta| < 2$ with $E_T > 15$ GeV, 4th jet: $E_T > 8$ GeV
- 0, 1, ≥ 2 identified jets from b quarks ("btags")

Typical Top Selection Criteria

Cylindrical coordinate system:

- θ: polar angle w.r.t. to proton direction
- φ: azimuthal angle
- Pseudorapidity: $\eta = -\ln \tan(\theta/2)$
- Transverse energy:

E

$$\vec{E_T} = \sum_{\text{cal towers}} E_i(\sin \theta_i, \phi_i)$$

Missing transverse energy ("MET"):

$$\vec{F}_T = -\sum_{\text{jets}} \vec{E_T} - \sum_{\text{leptons}} \vec{p_T}$$

• Lepton + Jets: $t\bar{t} \rightarrow Wb Wb \rightarrow Ivb qq'b$

- Isolated lepton with $p_T > 20 \text{ GeV}/c$
- Neutrino: missing E_T ("MET") > 20 GeV
- 3 jets within $|\eta| < 2$ with $E_T > 15$ GeV, 4th jet: $E_T > 8$ GeV
- 0, 1, ≥ 2 identified jets from b quarks ("btags")
- Dilepton: $t\bar{t} \rightarrow Wb Wb \rightarrow Ivb Ivb$
 - Two oppositely charged leptons with $p_T > 20 \text{ GeV}/c$
 - Two neutrinos: MET > 25 GeV
 - \geq 2 jets within $|\eta| < 2.5$ with $E_T > 15$ GeV
 - Scalar sum of lepton p_T s, jet E_T s and MET: H_T > 200 GeV
 - 0, 1, ≥ 2 b-tags

Secondary Vertex B-Tagging

- CDF's standard "SecVtx" algorithm:
 - Long lifetime of B mesons: detect displaced secondary vertex
 - Discriminants: Significance of displacement in xy plane (Lxy) and impact parameter
- Further taggers based on jet probability or soft leptons from semileptonic B decays

48

- Problem: infer parton energy (hard scattering process) from measured jet energy
- Jet reconstruction by clustering algorithm with fixed cone size
- Jet energy corrected for:
 - Non-uniform detector response
 - Different response to different particles
 - Multiple pp interactions
 - Un-instrumented areas
 - Underlying event (spectators)
 - "Out-of-cone" energy
- Correction leads to large systematic uncertainties, partly compensated by in-situ calibration in data

Top Quark Mass

- Top mass measurements enter the era of precision physics:
 - Three independent top decay channels
 - At least a dozen different analysis techniques
 - Measurements are very consistent
 - March 2007 Tevatron combination: 1.1% uncertainty on top mass
- 8 new or updated top mass measurements from CDF & DØ presented at Lepton-Photon 2007

• FCNC signal MC generated with Pythia (Gen6):

Sample	Sample Size	Description	
$t\bar{t} \to Z(ll)cW(q\bar{q}')b$	539,445	$Z \rightarrow e^+ e^-, \mu^+ \mu^-$ and $W \rightarrow q \overline{q}'$	Main Sample
$t\bar{t} \to Z(ll)cW(l\nu)b$	111,181	$Z \rightarrow e^+e^-, \mu^+\mu^-$ and $W \rightarrow e\nu, \mu\nu, \tau\nu$	Additional
$t\bar{t} \rightarrow Z(incl.)cW(incl.)b$	116,573	Inclusive Z and W decays	
$t\overline{t} \to Z(ll,q\overline{q})cZ(ll,q\overline{q})c$	116,573	Double FCNC decay: $Z \rightarrow e^+e^-, \mu^+\mu^-, q\overline{q}$	
$t\bar{t} \to Z(ll)uW(q\bar{q}')b$	116,573	$Z \rightarrow e^+e^-, \mu^+\mu^- \text{ and } W \rightarrow q\overline{q}'$	t→Zu vs. t→Zc
$t\bar{t} \to Z(ll)cW(q\bar{q}')b$	116,573	As Above, $m_t = 170 \mathrm{GeV}/c^2$) – M
$t\bar{t} \rightarrow Z(ll)cW(l\nu)b$	106,465	As Above, $m_t = 170 \mathrm{GeV}/c^2$	$170 \text{ GoV}/c^2$
$t\overline{t} \to Z(ll,q\overline{q})cZ(ll,q\overline{q})c$	116,573	As Above, $m_t = 170 \mathrm{GeV}/c^2$	

Full 1.12 fb⁻¹ run range, underlying event

- Reweight samples to get SM expected helicity of Zs from top decay: 65% longitudinal, 35% left-handed
- Signal acceptance:
 - Defined after helicity reweighting
 - Corrected for trigger efficiencies and lepton ID and reconstruction scale factors on object-by-object basis

• Problem: $t \rightarrow Zq$ vertex unknown to PYTHIA

- Decays generated flat in cos θ* (angle between top and lepton of same charge sign from Z decay, in Z rest frame)
- Expected helicity for pure V–A decay: 65% longitudinal (f⁰), 35% left-handed (f⁻). According to Tim Tait: "Wacky models" may mix left-handed and right handed fractions, but not longitudinal and handed:

$$\frac{d\sigma}{d\cos(\theta^*)} = f^0 \cdot \frac{3}{4} \left(1 - \cos(\theta^*)\right) + f^- \cdot \frac{3}{8} \left(1 - \cos(\theta^*)\right)^2 + f^+ \cdot \frac{3}{8} \left(1 + \cos(\theta^*)\right)^2$$

with SM prediction for f⁰:
$$f^0 = \frac{{m_t}^2}{2m_Z^2 + {m_t}^2} \approx 0.65$$

Solution:

- Re-weight sample for acceptance calculation: 65% longitudinal, 35% left-handed
- Assign systematic uncertainty to unknown helicity
- To first order: acceptance for I⁺ and I⁻ identical → same acceptance for same fraction of left-handed/right-handed

Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC

- Blind analysis: cannot change cuts after "opening the box"
- Closer look at the data: excess of events with transverse mass around 200 GeV
- Compare cuts at 200 GeV and 220 GeV: most likely explanation of higher than expected limit

Selection	Observed (Expected) Events		
	$m_T > 200 {\rm ~GeV}$	$m_T > 220 \text{ GeV}$	
Anti-Tagged	12 (7.7)	7 (6.4)	
Loose Tag	4 (3.2)	3 (2.8)	
Total	16 (10.8)	10 (9.2)	
Cut Efficiency (%)	11.3 (8.3)	7.1 (7.1)	

Transverse Mass (Anti-Tagged)

- Original mass χ^2 only defined with four or more jets (mostly blind)
- Validate two out of three pieces in 3-jet bin: good agreement

- Goal: assign probability to each MC event that at least one jet is b-tagged
- MC: can match reconstructed jet to true B hadron
- Difficulty: MC simulation does not reproduce data perfectly
 - Introduce "scale factor" for b-tagging efficiency (= ratio of data to MC efficiency)
 - Derive "mistag probability" from data (= probability to assign b-tag to light flavor jet)
- Per-event tag rate: combine probabilities for all jets

-

Systematics: Details

Helicity	Base Selection	(%) Anti-Tagged	(%) Loose Tag (%)
35% LH, 65% Long.		default	
Flat	-4.3	-4.2	-4.5
100% Longitudinal	5.0	4.7	4.5
100% Left-Handed	-9.2	-8.8	-8.3
100% Right-Handed	-8.6	-8.6	-9.5
35% RH, 65% Long.	0.2	0.1	-0.4
Total Uncertainty (%)	3.5	3.4	3.2
Sample Bas	e Selection (%)	Anti-Tagged (%)	Loose Tag (%)
More ISR	0.0	2.4	-1.6
Less FSR	0.4	-0.1	3.0
More FSR	-0.1	-0.9	2.9
Less FSR	1.3	-0.4	4.7
Total	1.3	2.6	6.5

Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC

Expected limit:

 $\sum_{n_{\rm obs}} P(n_{\rm obs}|n_{\rm back}) \cdot \operatorname{Lim}(n_{\rm obs}|A, n_{\rm back})$

- P: Poisson probability to observe nobs events with nback background events
- Lim: limit with *n*_{obs} events given acceptance *A* and *n*_{back} background events (any limit calculation machinery)
- This analysis:
 - (Faster) objective Bayesian limits for optimization
 - ("Better") Feldman-Cousins limits for final result
 - Both methods: systematic uncertainties included
 - Results track each other well

Expected 95% C.L. Upper Limit on BR(t→Zq): **7.1% ± 3.0%**

Why Feldman-Cousins?

- Reporting results of particle physics experiments: confidence intervals, e.g. central value and uncertainty, upper/lower limit
- Two rivaling schools on reporting confidence intervals
 - Frequentist approach: If the experiment would be repeated infinitely many times, the true value would lie within the interval in a fraction α of the experiments
 - Bayesian approach: degree of belief that the true value lies within the interval is α
- Both approaches have their advantages and disadvantages
 - New (frequentist) approach by Gary J. Feldman (Harvard) and Robert D. Cousins (UCLA)
 - Published in Phys. Rev. **D57** (1998) 3873 (quite readable)

Bob Cousins

- Classical probability theory:
 - Probability that an element belongs to two sets A and B

 $P(A \cap B) = P(A) \cdot P(B|A)$ $P(A \cap B) = P(B) \cdot P(A|B)$

- In words: the probability of an element to belong to the union of two sets *A* and *B* is the probability of the element to belong to set *A* times the probability to belong to *B* given it belongs to *A* (and vice versa: probability to belong to *B* times probability to belong to *A* given it belongs to *B*)
- Result: Bayes' theorem $P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$

Goal: measure parameter μ , i.e. construct Bayesian confidence interval for μ from a set of measurements **x** = (x_1 , x_2 , ..., x_N)

- 1. Know probability to observe experimental value x_i for a given value of μ : $P(x_i | \mu)$, e.g. Poisson distribution
- 2. Construct joint probability for **x** ("likelihood function"):

$$L(\mathbf{x}|\boldsymbol{\mu}) = \prod_{i=1}^{N} P(x_i|\boldsymbol{\mu})$$

- 3. Apply Bayes' theorem to obtain posterior probability $P(\mu | \mathbf{x}) = \frac{L(\mathbf{x} | \mu) P(\mu)}{\int d\mu' P(\mathbf{x} | \mu') P(\mu')}$
- 4. Find confidence interval $[\mu_1;\mu_2]$ such that

$$\int_{\mu_1}^{\mu_2} \mathrm{d}\mu' P(\mu'|\mathbf{x}) = \alpha$$

 $P(\mu|\mathbf{x})$

• α is degree of belief that μ is in [μ_1 ; μ_2]

Problem: Bayes' theorem requires prior probability density P(µ), i.e. prior knowledge about the the parameter to be measured (intrinsically subjective)

$$P(\mu|\mathbf{x}) = \frac{L(\mathbf{x}|\mu)P(\mu)}{\int d\mu' P(\mathbf{x}|\mu')P(\mu')}$$

 Solution for uniquely defining μ₁: draw horizontal line at fraction α of area under posterior probability

64

 Likelihood function is only source of information: estimator for µ from maximum likelihood, i.e.

$$\frac{\partial L}{\partial \mu} = 0$$
, with $L(\mathbf{x}|\mu) = \prod_{i=1}^{N} P(x_i|\mu)$

 Confidence interval [µ₁;µ₂] from Neyman construction ("confidence belt")

Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC

- Infinitely many repetitions of experiment: interval [μ₁;μ₂] includes true value of μ in a fraction α of the experiments
- Problem 1: freedom of choice for x₁
 - Flip-flopping (as for Bayesian limit)
- Problem 2: "Under-coverage"
 - If P(x|µ) leaks into unphysical values
 (e.g. x₁ < 0), interval [0;x₂] does not cover a fraction α
 - Over-coverage is unavoidable for discrete x
 - Generally: over-coverage tolerable, but just too "conservative"

- Use freedom in Neyman construction,
 i.e. choice of x₁, to achieve
 - Smooth transition between upper/lower and central intervals ("unified" limits)
 - Correct treatment of unphysical regions
- Introduce (i.e. re-discover for highenergy physics) ordering principle based on likelihood ratio

$$R(x) = \frac{P(x|\mu)}{P(x|\mu^{\text{best}})}$$

(μ^{best} : physically allowed value of μ for which $P(x|\mu)$ is maximum)

Construct frequentist confidence belt

Feldman–Cousins approach:

- Solves problems present in construction of Bayesian and frequentist confidence intervals
- Widely accepted in scientific community
- Applications: check out original paper (quite readable)
- Further developments: incorporation of systematic uncertainties (impossible in frequentist approach)
- Many examples for application in CDF: measurement of |V_{tb}|, fraction of tt production from gluon fusion, FCNC search, ...

Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC