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First published observation of the muon came
from cosmic rays:

Paul Kunze “a particle of uncertain nature”

Z. Phys. 83,1 (1933)
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Identified in 1936

Study of cosmic rays by
Seth Neddermeyer and
Carl Anderson

[

MAY 15, 1937 PHYSICAL REVIEW VOLUME 51

Note on the Nature of Cosmic-Ray Particles

SeETH H. NEDDERMEYER AND CARL D. ANDERSON
California Institute of Technology, Pasadena, California

(Received March 30, 1937)

EASUREMENTS! of the energy loss of massive than protons but more penetrating than
particles occurring in the cosmic-ray electrons obeying the Bethe-Heitler theory, we
showers have shown that this loss is proportional have taken about 6000 counter-tripped photo-
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Muon properties:

Lifetime ~2.2 us, practically forever
2nd generation lepton

m/m, = 206.768 277(24)

produced polarized

- in-flight decay: both "forward” and "backward” muons are highly
polarized

Paul Scherrer Institut has 108 low-energy p/s in a beam

The Pion Rest Frame

spin

——— @ momentum
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Death of the Muon

Decay is self analyzing

The Muon Rest Frame

+ momentum
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What have we learned from the p's death?

» The strength of the weak interaction
- i.e. the Fermi constant Gg (more properly 6,)

- The V- A nature of the weak interaction

+ Lepton flavor conservation in p-decay

- VEV of the Higgs field: Oz — 1,

» Induced form-factors in nuclear p-capture
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Theory of Magnetic and
Electric Dipole Moments

The Quantum Theory of the Electron.
- By P. A. M. Dirac, St. John’s College, Cambridge.

(Communicated by R. H. Fowler, F.R.5.—Received January 2, 1928.)

Proc. R. Soc. (London) A117, 610 (1928)
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618 P. A. M. Dirac.

§ 4. The Hamaltonwan for an Arbitrary Field.,

To obtain the Hamiltonian for an electron in an electromagnetic field with
scalar potential A, and vector potential A, we adopt the usual procedure of
substituting p, + e¢/c . A, for p, and p +e/c. A for p in the Hamiltonian
for no field. me equation (9) we thus obtain

o+ Z80+ os (@, DA ) o pyme [§ =0, (14)

This differs from (1) by the two extra terms

in K. These two terms, when divided by the factor 2m, can be regarded as the
additional potential energy of the electron due to its new degree of freedom.
The electron will therefore behave as though it has a magnetic moment ek [2mc. o
and an electric moment 2eh/2mc.p, . This magnetic moment 1s just that

assumed in the Spinning electron model. The electric moment, being a pure

imaginary, we should not expect to appear in the model. It is doubtful whether



Magnetic and Electric Dipole Moments:

* Muon Magnetic Dipole Momoment a, chiral changing
=75 eh
ts = s (2m> > = ) 2m
* Muon EDM (g — 2)
a =
2
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Magnetic and Electric Dipole Moments:

* Muon Magnetic Dipole Momoment a, chiral changing
aulef1(a®)vg @?éz(fhﬁéb
f1(0) =1 ) = ay
- Muon EDM (g— 2)

i | 2 12(42) — (@) TS B s
fQ(O) — ay f3(0) = d‘u, EDM

BOSTON|
UNIVERSITY B. Lee Roberts, U-Penn



Radiative corrections change g

Vg g

g:2-|-n N +CZ(%)2
v

Dirac Schwinger

Stern-Gerlach Kusch-Foley
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The SM Value for electron and muon anomalies
ay(SM) = a,(QED) +ay(hadronic) 4 a, (weak)

+ higher order terms

||%|||||||IIIIII'

:

,
a il
;

higher order terms

€,

‘1 ©
e vrs. u: relative contribution of heavier things ( B ) ~ 42,000
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Lowest Order Hadronic from e*e- annihilation
using analyticity and the optical theorem:

ymy\2 [ ds o(eTe~ — hadrons)
o m S
(had) = ’L) / — K (S
a“_( ) ( 3 | 1(5)( (e"‘e_ + ) )
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Two experiments at the Budker Insitute at Novosibirsk
have measured R(s) to better than a percent. KLOE at
Frascati has also measured R, and BaBar has a large
data set that is being analyzed with a blind analysis.

CMD-2 SND

i |—e— 04,95 data
i |7 96 data
" 97 data
- [*-98data

IF,f
IF,f

1 1 1 L] 1 L | L L 1
R R 400 600 800 1000
4 500 1000 \s, MeV

p—®» meson
interference
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Central values

R(s) measurements at low s

6 [ I Il |I] I |:: Il il ] L I I I T | I I Tl | : T T I |
| Babar/Belle (SR),
5 — .
E I:: 1: e QCD §
4 i(LOE (ISR) ?
Y ST | " -
- VEPP-2000y . . 4 & | y
C A il ’%’“”“E’ 7
Tl :
] :_ VEP:P Z'TM + R O BES m Crystal Ball _:
] ::1' & == exclusive data e 4 PLUTO :
0 F | | 1 J’: 1.“4_ J I\EI‘--I_'I"l' =k | i = ] | L1 1 1 | I I I ] = = I = =l B | = =1 ]
0.5 1 1.8 2 2.5 3 3.5 4 4.5 5

Vs (GeV)

At low s the cross-section is measured independently for each final
state

BOSTON from Davier/Hocker
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The SM Value for the muon anomaly (10-10)

Q3 V3 11 658 471.809 (.016)
E + A o 2
D,y H’YHO:FHYH +---+ Cs (;)
< ¢ & 690.1 (4.7)
E Y'% ?é g w%u “g“"“%%l"”""lb e 9 7 9 ( O 9)
Yh N e e Y ! 11 (4)

W Y ¥ Y
e ".‘é"" fw i b 15.4 (.2)
l :

11659 208.0(6.3)

s # from Miller, de Rafael, Roberts, Rep. Prog. Phys. 70 (2007) 795—-881
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a, is sensitive o a wide range of new physics

bstruct m}
* substructure Lt
M
- SUSY (with large tang )
M m3 4 i
0, (SUSY) ~ S:S(m Z;Wmﬂ tan ﬁ 1 - —“ In m)

2.13 1o 10. 100 Gev

* many other things (extra dimensions, etc.)
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Spin Motion in a

Magnetic Field

Momentum turns with o, cyclotron frequency
Spin turns with og

eBB geB eBB

wsg = (1 —7)

W —
¢ mcry 2mc ymc

Spin turns relative to the momentum with o,
g — 2) eBB e

wa:wg—wcf:( 2 mc:&%
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First muon spin rotation experiment

Observations of the Failure of Conservation
of Parity and Charge Conjugation in

1.4

= oo

oW

ENTS RELATIVE TO ZERO APPLIED FIELD

BOSTON
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asymmetry (also leaked backwards) of a
about 159, of that for ut.

carhon. 1s found 1o he neeative andd

IX. The magnetic moment of the u—, boy

~—1/20, i.e.,

acrees with

|

I |

1.3

0 + 20 +40

AMPERES - PRECESSION FIELD CURRENT
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PHYSICAL REVIEW VOLUME 118, NUMBER 1 APRIL 1, 1960

Accurate Determination of the y* Magnetic Moment*

R. L. Garwin,t D. P. HurcuinsoN, S. Penman,i anp G. Suariro$
Columbia Universily, New York, New Vork

(Received August 4, 1959)

Note added in proof—Experiments which have re-
cently been reported to us [ J. Lathrop, et al. and A.
Bearden et al., Phys. Rev. Letters (to be published) ]
indicate a mass value of M ,=206.76._00:7°-9%2f,. This
yields a value of
the assigned errors are now slightly greater than above,
it is to be noted that the new result represents a direct
measurement, rather than a lower limit. The agreement

2 = 0.001161
-

a
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Subsequent (g-2) experiments measured the
difference frequency, ®,, between the spin
and momentum precession

With an electric quadrupole field for vertical focusing

Wqg = — < _a B —

a = m | K A

B = <B>u—diSt ot~
Ymagic — 29.3

BOSTON |
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Experimental Technique

25ns bunch of _ X, =77 mm
5 X 1012 protons 7T 8= 10 mrad
from AGS

Bdl=01Tm

Inflector

 Muon polarization
 Muon storage ring

» focus with Electric Quadrupoles
24 electron calorimeters

I

| -orage Kicker
' \Ilring Modules
R=711.2cm

-

(Zja — CLMB

(thanks to Q. Peng) c



_ f; Cyclotron period
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To measure w, we used Pb-scintillating fiber
calorimeters.

Sci-Fi Calorimeiter
module

Measures Energy
and time

L
¥6300 ns 76350 ns
1 | 1 1 1 1 | 1 1 1 1

e o

spin forward, more
high energy e

spin backward, less

high energy e RGP Tl Count number of e- with
E_21.8 GeV

gives t, I/

BOSTON
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We count high-energy electrons as a

function of time.
4 x10% e, E->1
f(t) ~ Noe M[1 + Acos

electron time spectrum (2001)

8 GeV
wal + Cb)]
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The £ 1 ppm uniformity in the average field

is obtained with special shimming tools.

thermal
irsu'ation

We can shim the

|

dipole,
pole piece
quadrupole 000 e
ORI
progrgmrplable
. { t
independently S
g—2 Magnet in Cross Section
p=7112 mm
o —_———
BOSTON >
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The £ 1 ppm uniformity in the average field
is obtained with special shimming tools.

We can shim the
dipole,

quadrupole

Independently

BOSTON |
UNIVERSITY

<B>azimuth

// 2. 0.5 ppm
-0.5

1 contours

0.5

B

0

0.5

A1
-0.5
0 \ 0.5 s
10 2
—

2.5 ppm
. R Ry 1 0 1 2 3 4
radial distance (cm)

vertical distance (c m)

-i:-&:l'uho-\mcg

Ogsyst on <B>u—dist — 4+0.03 ppm

B. Lee Roberts, U-Penn — 27 November 2007 - p. 28/54



The magnetic field is measured and controlled using
pulsed NMR and the free-induction decay.

g » Calibration to a spherical
| g water sample that ties the
field to the Larmor frequency
of the free proton w,.

/

1?"t.r(?)lle_\_.' prabes ) Y so we measure Ct)a and a)p

B =50 15 0 2600 2800 3000 3200
U time [ps] Frequency [Hz] — 27 November 2007 - p. 29/54



When we started in 1983, theory and
experiment were known to about 10 ppm.

Theory
uncertainty was
~ 9 ppm

Experimental
uncertainty was
7.3 ppm

116 590 000
116 591 000
116 592 000
116 593 000
116 594 000
116 595 000
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E821 achieved 0.5 ppm and the e*e- based theory is
also at the 0.6 ppm level. Difference is 3.4c

(94ppm) CERN W'

——— CERN L

E821 (97) 1
E821(98) 1
E821(00) W
» E821(01) H

MdRR=Miller, de Rafael,
Roberts, Rep. Prog.
Phys. 70 (2007) 795

|
@
+mg
I‘E-G
Y
N
u:l.ﬂ
LD
Tr .
=

116 290 000
116 594 000
116 585 000

AafIY) = (29.5 £ 8.8) x 10710
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If the electroweak contribution is left out of the
standard-model value, we get a 5.1 o difference.

oV =15.4(1)(.2) x 10719

A(no EW) = 44.9(8.8) x 10719

BOSTON |
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a, helps constrain new physics

In a constrained minimal supersymmetric model, (g-2), provides an
independent constraint on the SUSY LSP (lightest supersymmetric
partner) being the dark matter candidate.

tan=10, u>0

800-

Historically muon (g-2) has
played an important role in

> restricting models of new
) physics.
i It provides constraints that are
9 restrictions inde_pendent and corr_lplementarv
S to high-energy experiments.
S
'S
7
: CMSSM calculation Following
100 200 300 400 500 600 700 800 900 1000 Ellis, Olive, Santoso, Spanos,
gaugino mass My, (GeV) provided by K. Olive

[ BOSTON |
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MSSM scan of M gsp Vrs. a SUSY

100 200 300 400 500 600 700
Miosp [GeV]

D. Stockinger, J. Phys. G 34, R45 (2007)
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a, will help constrain the interpretation of LHC

data, e.g. tan S

e o
MSSM reference point SPS1a | ot ety |
With these SUSY parameters, 25 f o devored

LHC gets tan S of 10.22 £ 9.1. ;
20 |
arXiv:0705.4617v1 [hep-ph] 15

10

‘2 4 6 8 10 12 14 16 18 20
tan S
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An Intermezzo: The search for a

Muon EDM and CPT/Lorentz violation

- We have two new results:
- a hew limit on the muon EDM

- a limit on CPT/Lorentz invariance violation in muon
spin precession

BOSTON |
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Electric Dipole Moment:
PT

‘|‘ Transformation
— Properties

T + — -
If CPT is valid, an EDM would imply non-standard

model CP.
EI\IC])VSEECI)%}T | B. Lee Roberts, U-Penn — 27 November 2007 - p. 37/54




Purcell and Ramsey: EDM would violate Parity

Proposed to search for an EDM of the neutron

“raises directly the question of parity.”
LETTERS TO THE EDITOR 807

On the Possibility of Electric Dipole Moments The authors wish fo thank Mr. Smith for sugresting an im-
for Elementary Particles and Nuclei pemtent

. M. PurceLnL asn N, F. Raumsey
Depariment of Physics, Harvard Universily, Cambridge, Massachusetls ¢
April 27, 1950

i snwrantian da e oavieinal salealatiam Aae tha nofeaos

T is generally assumed on the basis of some suggestive theo-
retical symmetry arguments' that nuclei and elementary
particles can have no electric dipole moments. It is the purpose of
this note to point out that although these theoretical arguments
are valid when applied to molecular and atomic moments whose
electromagnetic origin is well understood, their extension to nuclei
and elementary particles rests on assumptions not yet tested.
One form of the argument against the possibility of an electric
dipole moment of a nucleon or similar particle is that the dipole’s
orientation must be completely specified by the orientation of the
angular momentum which, however, is an axial vector specifying
a direction of circulation, not a direction of displacement as would
he required to obtain an electric dipole moment from electrical
charges. On the other hand, if the nucleon should spend part of
its time asymmetrically dissociated into opposite magnetic poles
of the type that Dirac? has shown to be theoretically possible, a
circulation of these magnetic poles could give rise to an electric
dipole moment. To forestall a possible objection we may remark
that this electric dipole would be a polar vector, being the product
of the angular momentum (an axial vector) and the magnetic pole
strength, which is a pseudoscalar in conformity with the usual

— e ma )

o ous

[Jl.lf[llllg
ral tem-
perature
vill occur

perature
of 2103
between

The argument against electric dipoles, in another form, raises
lirectly the question of parity. A nucleon with an electric dipole

handed coordinate systems; in one system the dipole moment

B Phys. Rev. 78 (1950)
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;: B. Lee Roberts, U-Penn — 27 November 2007 - p. 38/54



Spin Frequencies: uin B field with MDM & EDM

mcery

LS

geb

>— 1t 1 =)
mc
9—2) e5

mec

spin difference frequency = o, - ®,

Momentum —>

The highest energy
decay e* are along
the muon spin
direction

eb

ymc




Spin Frequencies: uin B field with MDM & EDM

+

. . m | 2
The motional E - field, -
B X B, is (~GV/m).

.~ = 29.3 dn (E - 2\
Ymagic Wa 1) ( N B)
C

h
dﬂzﬁ(e )Nnx4.7><1014 e Cm
2mec



Spin Frequencies: uin B field with MDM & EDM

Ymagic — 29.3

+
The motional E - field,

B X B, is (~GV/m).

The EDM causes the @

spin to precess out
of plane.

Wy
(not to scale)




The present EDM limits are orders of magnitude
from the standard-model value

Particle Present EOM limit SM value
(e-cm) (e-cm)
: 2.9 x 1072 |10-32 10731
e ~ 1.6 x 10727 izl
~18
v <10 (CERN) < 1038
2 x 107192 * (E821)
future u exp 10-#% to 104°

*to be finalized and submitted to PRD soon
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Dedicated EDM Experiment _, 1)—24 _ 10~2°

o = a, B = m 5
I v —1 c |

Use a radial E-field to turn off the o, precession

With o, = 0, the EDM causes the spin to steadily

precess out of the plane. ®
N



Connection between MDM, EDM and the lepton

flavor violating transition moment u — e

SUSY —> slepton mixing
U e MDM, EDM

BOSTON|
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Search for Lorentz and CPT Violation Effects in Muon Spin Precession

G.W. Bennett?, B. Bousquet!”, H.N. Brown?, G. Bunce?, R.M. Carey!, P. Cushman!'’, G.T. Danby?,
P.T. Debevec®, M. Deile!®, H. Deng!®, W. Deninger®, S.K. Dhawan'®, V.P. Druzhinin®, L. Duong!”

E. Efstathiadis!, F.J.M. Farley!'®, G.V. Fedotovich®, S. Giron!", § II!E! ). )

Grigoriev”,
M. Grosse-Perdekamp!®, A. Gmssma,nn? M.F. Hare!, D. "W Hertzog " W. Hughes!?

M. Iwasaki'?, K. Jungmann®", D. Ixzmalll?’ M. Kawamura'?, B.I. Khazin e fandem!”, F. Krienen®,
[. Kronkvist'”, A. Lam!, R. La,r'aen Y.Y. Lee‘z L. Locrashenkol 2 R. McNabb!®® W, I'l»I@nor2 J. Mi?,
J.P. Miller!, Y. I"vIlZl_lI'ﬂEl,Chlg 3w M. I’sI{:rr'EE‘Z D. I‘Jlliaﬁ2 C.J.G. Onclem rater®® Y, {Jrrlc:-v*l C.S. Dzben
J.M. Pale*ul Q. Peng!, C. C Polly®, J. Pretz!®, R. Prlglz G. zu Putlitz”, T. Qlanm S.I. Redin®1?,
O. Rind!, B.L. Roberts!, N. Ry slr:ulmr?', S. Sedykh®, Y.K. Semertzidis?, P. Shagin'?, Yu.M. Sha,tuncﬂ.r .
E.P. Sichtermann'®, E. Solodov®, M. Sossong®, A. Steinmetz!®, L.R. Sulak!, C. Timmermans!®,
A. Trofimov!, D. Urner®, P. von Walter”, D. Warburton?, D. Winn®, A. Yamamoto® and D. Zimmerman
(Muon (g — 2) Collaboration)
! Department of Physics, Boston University, Boston, MA 02215
? Brookhaven National Laboratory, Upton, NY 11973
3 Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
*Newman Laboratory, Cornell University, Ithaca, NY 14853
®Fairfield University, Fairfield, CT 06]30
® Kernfysisch Versneller Instituut, Rijksuniversiteit Groningen,
NL-9747 AA, Groningen, The Netherlands
7 Physikalisches Institut der Universitdt Heidelberg, 69120 Heidelberg, Germany
8 Department of Physics, University of Illlinois at Urbana- Champaign, Urbana, IL 61801
® KEK, High Energy Accelerator Research Organization, Tsukuba, Iharaki 305-0801, Japan
0 Department of Physics, University of Minnesota, Minneapolis, MN 55155
W Seience University of Tokyo, Tokyo, 153-8902, Japan
12 Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Takya 152-8551, Japan
13 Department of Physics, Yale University, New Haven, CT 06520

Submitted to PRL and back from the referee
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What we measure that could show CPT/Lorentz 0
violation

dja, T

e
™m

we = wg—w(; Where we is unaffected by CRI-AH-eremntz
to lowest order.

- BUT Wag — L{JGL(B) — u)a(wP)

Wa
. Instead we have touse R — —
Wp

| BOSTON |
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CPT/Lorentz violation in the Lagrangian®

_ _ 1 _
L' = —arpy™ ) — brhysyeh — Eﬂmm

1 1
+§%Cﬁw’}f" DMy + Etdm@bvm"‘" D ¢

a_, b are CPT odd, others CPT even

K? " K

All terms violate Lorentz invariance

In lowest-order, a, is insensitive to violating
Terms

Two tests of CPT/Lorentz violation:
- Difference between @, for 1+ and u-

- Sidereal time variation in @,

e Bluhm, Kostelecky, Lane, PRL 84,1098 (2000)
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Difference between @, for u* and u-

— — 1 —
L= —axpy "y —757% - EHRWUHW

—

1 1
+5ickaty” DA ¢ + SidiaPsY" D ¢

+ — 4b
— (TN T —
Awg = (Wh ) — (Wi ) COS X
f\/
Remember, to compare frequencies, in the experiment
we must use R — Wa

Wp

not o, since the magnetic field can vary.

Separate studies show that any variation in o, is much
less that our limits foro, T = 86164.09s

Ii - Tsolar = 86400 s - p. 48/54

sidereal



For two measurements with different
colatitudes and o,

_ _ 1 _
L' = —axpy™y —'7'5’7% — EHﬁwvﬁ)‘@b

b
AR = Z4(

Y Wpl
COSY{ COSY5
+2(mudzo + Hxy ) ( )

BOSTON |
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For the difference, we find

AR = —(3.6+3.7) x 1077

Bennett, et al., Phys. Rev. D73, 072003-1

b, = —(8.7 £ 8.9) x 1024 GeV

A
PAw, = = —(1.0+1.1) x 10~ 23
My
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Search for a sidereal per'iod oscillation in ®,

2001 - data
W(L 2291
fa=7_= Mm W m N
Tr 2290.4
0 1000 2000 5000
x 104 oy ()21 tlme(s) 10°
6179.16
wp617915 - i
— . Mﬁsm PRy g A |
fp o 2 zﬁu IR R
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BOSTON
__ B. Lee Roberts, U-Penn — 27 November 2007 - p. 51/54



Approaches to search for an oscillation signal:

* Multi-parameter fit
- good for all data

» Fourier Transform
- only works on equally spaced data

+ Lomb-Scargle test
- designed for unequally spaced data

» All gave comparable results.
-No significant oscillation
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Lomb-Scargle Test: reduces to a FT for
evenly spaced data.
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Lomb-Scargle test on simulated data: no signal

fraction with Lomb power
greater than that found in

Lomb—Scargle test on the simulated 2001 data

the real data

We conclude that no signal
lies in the data
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These limits translate into 95% CL limits on parameters

+ it _ut
= \/(z:& )%+ (BY )2 < 1.4 x 1072* GeV

bl = \/(“652)2 + (B5. )% < 2.6 x 1072* GeV

dividing by m,

+ H —23
Tfle <2 x 1023 TAQ < 3.8 x 10

Muonium hyperfine structure 'r“’+ < 5 x 10—22

electron in a penning trap r¢ < 1.6 X 10—21
m _

note that el = 8.7 x 10 21
M

| BOSTON | P
| UNIVERSITY | B. Lee Roberts, U-Penn - 27 November 2007 - p. 55/54



Other tests using both CERN and E821: y; x,

2b7 COSx1 , COSx»o
AR = ( + )
Y Wpl Wp?2
COS Y COS ¥
2(mudzo + Hxy) ( : 2)
Wpl Wp?2

(mudyo+ Hyy) = (1.6 £5.6 x 1072°) GeV

No evidence for CPT/Lorentz violation in the
E821 data.
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Future Improvements

in a,?

Ostat — +0.46 ppm Ogyst — +0.28 ppMm
» Theory (strong interaction part) will improve.

- both lowest order, and light-by-light

* We proposed to upgrade E821 at BNL to reduce
the total experimental error to 0.2 ppm,
(2.5 X better).

- At present, there is no funding for this upgrade.

» If money were no object, how well could we do?
- The limit of our technique is between ~0.1 and 0.06 ppm.
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The error budget for E969 represents a continuation of

improvements already made during E821

Systematic uncertainty (ppm) 1998 | 1999 | 2000 | 2001 | E969
Goal
Magnetic field - o, 0.5 0.4 | 0.24 | 0.17 | 0.1
Anomalous precession - o, 0.8 0.3 | 0.31 [ 0.21 | O.1
Statistical uncertainty (ppm) 4.9 1.3 | 0.62 | 0.66 | 0.2
Total Uncertainty (ppm) 5.0 1.3 | 0.73 | 0.72 | 0.25

Field improvements: better trolley calibrations, better tracking of
the field with time, temperature stability of room, improvements in

the hardware

Precession improvements will involve new scra
thresholds, more complete digitization period

calibration
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Let's spend a few minutes talking about
different possible levels of inprovement.

*+ E969 aimed for 0.2 ppm overall error
+ "Conservative" upgrade could to go 0.25 ppm

* "Legacy” effort could aim for a 0.14 ppm
overall error

- 0.1 ppm systematic and statistical errors.
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More Muons

* Improve beamline acceptance X2
» Open inflector opening X2
 New beamline front-end ~X2 ?

- Other tricks ?
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Space limitations prevent matching the inflector exit
to the storage aperture

ﬁ Outer cryostat

i R =7112 mm from ring center

HE‘EHE‘W‘E‘E‘W‘E‘E‘m‘m‘m‘m‘m‘mHm‘m‘m‘m‘m‘m‘
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The E821 inflector magnet had closed ends

which scattered away half the beam.
e

/ " A NbTi/Nb/Cu
i Magnetic Flux
T Shield o
Jacket uter
acke Coil
: Helium Channel
h(ljncﬁ 7 : (For radiation
0 : Shield)
Beam /
Channel
Helium Channel
(For Cooling)

|
Length =1.7 m; Central field =1.45T

Open end prototype, built and tested

—X2 Increase in Beam




Instead, a few technical developments toward a
next-generation experiment

For E821, a limiting factor was the hadronic flash at injection

(prompt pions, then delayed neutron captures)
Several systematics are affected by this initial pulse
(gain, time stability; pileup extraction, start time of fits)

PMTs had to be switched off and on for every fill

Question 1:
How do we get rid of the pions ?
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The current “forward-decay” beam 71 — /L_ ELL
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For E969, we considered the idea of backward muon
production ... the advantages are appealing

Momentum Ellipses For Magic Momentum Muon Production
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Toward a next-generation experiment

E821 Final statistical error was 0.46 ppm

For 0.1 ppm “Legacy” experiment, that’s > 20 times the counts

That’s hard.

You need a new idea.

Question 2:

Where do the muons come from and how
can we get (lots) more of them?



How to get more muons AND still avoid the
flash

m The recipe is well known and simple:

1. Take the 0-degree forward muons
High polarization, highest yield
2. Make the beam line so long that all the pions decay away

¢ But, that’s impractical, unless you recirculate

'\ Pion Production Target




PDR: Pion Decay Ring

Catch most muons in first 2 turns.
¢ Although spin precesses, it’s okay

Rest of turns just reduce pions by
decay time

Figure of Merit NP2 increased by
factor of ~12 or more

Fast “kicker” magnet required to
extract from the ring.

n/u Fluxes and

Figure of Merit

\

0 12 3 45 6 78

Number of turns in racetrack




Summary

* The measurement of e and p* magnetic dipole
moments has been an important benchmark for the
development of QED and the standard model of
particle physics.

* The muon anomaly has been particularly valuable in
restricting physics beyond the standard model, and
will continue to do so in the LHC Era

+ There appears to be a difference between a, and
the standard-model prediction at the 3.4 o level.
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. &7 Universit
Summary "R;{.{Ef‘um {_JfGlang‘; © LivirPOOL
- The measurementyg gac '|‘v.v‘ - Tallal
opical Workshop on
moments hClS bee The Muon Magnetic Dipole Moment (g-Z)ﬂ
deve|opmen1- Of Q 25 and 26 October 2007

PGI"TiC|e PhYSiCS School of Physics and Astronomy

The University of Glasgow
* The muon anomal

restricting physics beyond the standard model, and
will continue to do so in the LHC Era

+ There appears to be a difference between a, and
the standard-model prediction at the 3.4 o level.

* Much activity continues on the theoretical front.
+ The experiment can certainly be improved...

but the future is uncertain.
Thank you
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particle physics.

The University of Glasgow
* The muon anomal
restricting physics beyond the standard model.

+ There appears to be a difference between a, and
the standard-model prediction at the 3.4 o level.

* Much activity continues on the theoretical front.
+ The experiment can certainly be improved...
but the future is uncertain.
Thank you
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THE END
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Extra Slides
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A wide momentum width, and true 180-degree decays can lead to
higher polarization and more muon production ... but, the Lorentz boost

hurts We could never work here at 0 degrees

because the pions then enter the
storage ring and swamp the detectors

Momentum Ellipses For Magic Momentum Muon Productio Momentum Ellipses For Magic Momentum Muon Production
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But in backward mode, all the pions
have very different momentum than the
T BOSTON Ehaai 180 degrees is okay
‘ B. Lee Roberts, U-Penn — 27 November 2007 - p. 74/54



Multi-parameter fit R = C' + Ao cos

10

oscillation amplitude
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E821 w, systematic errors (ppm) A

Source of

. 1998 1999 2000 200
Uncertainty

Absolute Calibration 0.05 0.05 0.05 0.05

Calibration of Trolley 0.3 0.20 0.15 0.09

Trolley Measurements
of BO
Interpolation with the
fixed probes

Inflector fringe field 0.2 0.20

0.1 0.10 0.10 0.05

0.3 0.15 0.10 0.07

uncertainty from muon
distribution

Other* 0.15

0.1 0.12

Total - 0.4

*higher multipoles, trolley voltage and temperature response, kicker eddy currents, and time-

BOSTON varying stray fields. _
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Systematic errors on w, (ppm)

O stematic 1999 | 2000 | 2001
Pile-up 0.13 0.13 0.08
AGS Background 0.10 0.10 *
Lost Muons 0.10 0.10 0.09
Timing Shifts 0.10 0.02 0.02
E-Field, Pitch 0.08 0.03 *
Fitting/Binning 0.07 0.06 *
CBO 0.05 0.21 0.07
Beam Debunching 0.04 0.04 *
Gain Change 0.02 0.13 0.13
total 0.3 0.31 0.21
>*=0.11

| BOSTON |
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a(had) from hadronic t decay?

+ Assume: CVC, no 2"d-class currents, isospin breaking
corrections.
- e*e goes through neutral p
- while t-decay goes through charged p

* n.b. = decay has no isoscalar piece, e*e” does
Many inconsistencies in comparison of e*e- and
t decay:
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Testing CVC with one number

Infer 7 branching fractions (more robust than spectral functions) from e*e-data:

_ _ 67|V, 1|28 mr _ _
BRcvC (17 = WGVT) — ‘ ud|2 EW / dskln(s)ySU(z) corrected(g)
ms 0
T L L L L B
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d Bell reliminar
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t->2r 7*7n%v, +0.91%0.25 3.6
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25.40+0.10
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r~— 7~7%v, preliminary results from BELLE

preliminary results from BELLE on t nw spectral function presented at EPS 2005
* high statistics: see dip at 2.4 GeV?2 for first time in t data

 discrepancies with ALEPH/CLEO at large mass and ee data at low mass
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