Measurement of CP Violation Parameter β and Search for New Physics from BaBar Experiment

Chunhui Chen Department of Physics University of Maryland

Experimental HEP Seminar University of Pennsylvania January 18th, 2008

18

Open Questions in Particle Physics

Standard Model has explained almost all the experimental observables in high energy physics so far, but.....

> The question of flavor:

- Why are there three families of matter?
- Why are the neutrino masses so small?
- Why asymmetry between matter & anti-matter (CP violation)?

> The question of mass:

- Does the Higgs boson in SM exist?
- Mass hierarchy problems?
- > The question of the dark universe:
 - What is the dark matter in the universe?
 - What is the nature of dark energy?

> And more

Are there undiscovered principles of nature: New symmetries, new physical laws, new particles?

"New Physics": It's all around us !

Standard Model (25 free parameters): extraordinarily successful explanation of only ~5% of Universe

History of the CP Violation

CP: left-handed particles ↔ right-handed anti-particles C: charge conjugate; P: parity CP conserved

←1964

J. Cronin

V. Fitch

1987 Proposal to build asymmetric B factories to study CP violation in B decays (first coll. meeting 1993 first collisions in 1999)

2001: CP violated in $B^0 \rightarrow J/\psi K_S$ (sin2 $\beta \neq 0$) **2004:** CP violated $B^0 \rightarrow K^-\pi^+$ Br($B^0 \rightarrow K^-\pi^+$) \neq Br($B0 \rightarrow K+\pi^-$)

CP-even: $K_s \rightarrow \pi^+\pi^-$ CP-odd: $K_I \rightarrow \pi^+\pi^-\pi^0$

 $K_{I} \rightarrow \pi^{+}\pi^{-} (\sim 10^{-3})$

Unexpected, not fitting existing models,

Is CP violation a fundamental feature of

Nature or just an accident in kaons?

changed understanding of weak interaction!

CP violated in neutral kaons

2004→ Precise study of CP violation in B decays (large effects, theoretically clean, Important test of Standard Model).

Chunhui Chen, University of Maryland

Why Study CP Asymmetry

> CP violation (CPV) allowed in Standard Model (SM):

- Common origin with the quark mass and their mixing
 - Spontaneous electroweak symmetry breaking (EWSB) introduced by Higgs coupling
- * Probing the EW scale as well, complementary to other studies at energy frontier, e.g.: high $P_{\rm T}$ Physics at Tevatron & LHC
- Excellent probe for new Physics (NP) beyond SM
- Does the SM explain the observed CP violation effects?

> One of the conditions to generate matter dominated Universe:

- Sakharov conditions (1967):
 - \checkmark Violation of charge conjugation C & parity P asymmetries
 - CP Violation in SM is not large enough
 - Baryon number violation, e.g., proton decay
 - Deviation from thermal equilibrium

CP Violation: CKM Matrix & EWSB

In the SM, electroweak symmetry breaking (EWSB) arises from the Higgs mechanism, which gives mass to the W and Z bosons via interaction with the Higgs boson:

$$m_W = \frac{1}{2} \upsilon g = m_Z \cos \theta_W$$

v = "vacuum expectation value" ~ 250 GeV

Yukawa interaction of quarks with the Higgs field:

$$\mathcal{L}_Y = -Y_{ij}^d \overline{Q_{Li}^I} \phi d_{Rj}^I - Y_{ij}^u \overline{Q_{Li}^I} \varepsilon \phi^* u_{Rj}^I + \text{h.c.}$$

Quark mixing: flavor (weak) eigenstate \neq mass eigenstate related by CKM matrix

V_{ij} : the CKM matrix that coupling the left-handed ith generation of up-quark (u,c,t) with the left-handed jth generation of down-quark (d,s,b)

CKM Matrix Phenomenology

weak eigenstates = V_{CKM} mass eigens,

Chunhui Chen, University of Maryland

Unitarity Triangle & Search NP in B Decays

Model Independent test SM & search for NP:

- > Overconstarint of unitarity triangle
- > Redundant measurement of same CKM phases: $sin 2\beta$

- Most precisely measured CKM angle
- Important measurements for the test of SM and search for NP
 - Overconstraint unitarity triangle
 - $\checkmark\,$ Possible deviation of measured sin2 β in different modes due to NP

B Physics v.s. Conventional Search of NP

- > Conventional search: direct observation
 - ✤ Eg: observation of Higgs or new particles at LHC
- > Approach in B physics:
 - → m_B =5.28GeV, New Physics scale Λ_{NP} ~ TeV
 - FCNC forbidden at tree level in SM
 - Deviation from SM due to "virtual loops" effect
 - * sensitive to NP $\Lambda_{NP} >> E_{experiment}$

> Lesson learned in B^o mixing:

Observation of B⁰ mixing in ARGUS experiment in 1987

- Quantum loop process: rate depends on mass of virtual top quarks and W bosons circulating in loop and quark couplings
- Implication: m_{top}>50 GeV/c², heavier than "expected"
- First evidence of "heavy top", long before it is directly observed at 170 GeV/c² in Tevatron

How to Measure CKM angles (B)

Use mixing induced CPV: CPV through interference between mixing and decay amplitude

- > B⁰ and B⁰ decay differently:
- > Non-exponential decay
- > Time-dependent decay rate asymmetry:

$$A_{CP} \equiv \frac{\Gamma(\overline{B}^{0} \to f_{CP}) - \Gamma(B^{0} \to f_{CP})}{\Gamma(\overline{B}^{0} \to f_{CP}) + \Gamma(B^{0} \to f_{CP})}$$
$$= S\sin(\Delta m \Delta t) - C\cos(\Delta m \Delta t)$$

Indirect CPV Direct CPV

 $\begin{array}{l} \succ \ {\cal C}: \mbox{ direct CP violation} \\ \checkmark \ {\cal C} \neq 0 \quad \Gamma(B \to f) \neq \Gamma(\overline{B} \to \overline{f}) \\ \mbox{ inducted CP violation} \\ \checkmark \ related \ to \ {\cal C}{\cal K}{\cal M} \ angles \\ \mbox{ special case: one weak phase in decay amplitude} \\ \checkmark \ {\cal C}{=}0 \\ \qquad \checkmark \ {\cal S}{=} {\rm constant} \times {\rm sin} 2\beta \ (eg: \ {\sf B}^0 \to {\sf J}/\psi {\sf K}^0) \\ \qquad \checkmark \ {\rm Clean way to extract } {\cal C}{\cal K}{\cal M} \ phases \end{array}$

Independent Measurement of $\boldsymbol{\beta}$

Determination angle β by measuring sin2 β : Can use three different categories of B^0 decays

Measure sin2 β in b \rightarrow ccs Modes

> Decay dominated by Single Weak Phase:

$$\checkmark$$
 C=O and S= η_{CP} sin2 β

 $\checkmark \eta_{CP}$ =+1(-1) for CP even: J/ ψ K_L (odd: J/ ψ K_S) state

Correction due to penguin diagram is small

 \checkmark $|\Delta S| \sim 10^{-3} \& |\Delta C| \sim 10^{-3}$ (hep-ph/0610120 : Factorization + Perturbative QCD)

> Theoretically clean way to measure $sin 2\beta$

> Same principle for $B^0 \rightarrow \psi(2S)K_S, \eta_c K_S, \chi_{c1}K_S, J/\psi K^{*0}(K^{*0}\rightarrow K_S\pi^0)$

Experimental Methods

> Produce and reconstruct B mesons

> Measure decay time of reconstructed B meson

- * Mean decay proper time of $B^0 \sim 1.5$ ps (10⁻¹² second)
- Need precise position measurement (vertexing)

Determine initial flavor of reconstructed B meson:
B Elavor Taccino

B Flavor Tagging

PEPII Performance: Integrated Luminosity

As of 2007/09/07 00:00

Chunhui Chen, University of Maryland

BaBar Detector

University of Pennsylvania, January 18, 2008

17

BaBar Detector

Chunhui Chen, University of Maryland

Reconstruction of B Decays

For exclusive *B* reconstruction, two nearly uncorrelated kinematic variables are used:

"Energy Difference"

"Energy-substituted mass"

$$m_{ES} = \sqrt{\left(\boldsymbol{\mathcal{E}}_{beam}^{\star} \right)^2 - \left(\mathbf{p}_{B}^{\star} \right)^2}$$

Chunhui Chen, University of Maryland

Signal Yield and Purity

383 ×10⁶ BBbar pairs

Determine Δt and B Flavour

- > Fully reconstruct a B meson (B_{rec}) that decays to CP/Flavor eigenstate
- \blacktriangleright Reconstruct inclusively vertex of other B meson (B_{tag}) with remaining charged tracks
- > Compute decay proper time difference (Δ t) between B_{rec} and B_{tag}
 - ✓ Use their vertex (Δz) difference: $\Delta t \approx \Delta z / \langle \beta \gamma \rangle c$
 - ✓ $\sigma(\Delta z) \sim 60 \mu m$ for B_{reco} and $\sigma(\Delta z) \sim 170 \mu m$ for B_{tag}
- > $\Upsilon(4S)$ produce coherent B pair
- B⁰ meson decays to flavor eigenstates ~ 100%
- > Determine the flavor of $B_{tag} \Rightarrow$ infer the initial flavor of B_{rec}
 - ✓ Eg: b→c→e⁻ or b→c→s→K⁻
 - ✓ Effective tagging efficiency at BaBar: 30.4 ±0.3%

(same technique used for all time-dependent CP analyses)

CP Analysis: Time Distribution

- > R: detector Δt resolution, w: wrong tag fraction
 - ✓ BFlav and CP sample have the same w and R
- > Combined unbinned maximum likelihood fit to Δt spectra of B flav and CP samples
 - \checkmark Float both sin2 β and C: 66 free parameters
 - All parameters extracted from data

CP violation fit result from $B^0 \rightarrow (c\bar{c})K^{(*)0}$

Chunhui Chen, University of Maryland

From sin2 β to β : cos2 β Measurement

UT from CP Violation & Indirect Measurement

Measure sin2 β in b \rightarrow c $\overline{c}d$ (B⁰ \rightarrow D^{(*)+}D^{(*)-}) mode

Another implication of overconstrained: redundant approaches to same CKM parameter

 $B^0 \rightarrow D^{*+}D^{*-}, D^+D^-, D^{*+}D^-, D^{*-}D^+$

 $B^0 \rightarrow D^{*+}D^{*-}$ > P→VV decay, Mixed CP-even (L=0,2) and CP-odd (L=1) state > S=-(1-2R_T)sin2β, > Need angular analysis to extract R_T (CP odd fraction)

B⁰→D*+D*- Signal Yield

Chunhui Chen, University of Maryland

Time-integrated Transversity Analysis ($B^0 \rightarrow D^{*+}D^{*-}$)

• θ_1 : angle between π^- momentum in D*- rest frame and D*- flight direction in B rest frame • θ_{tr} : angle between normal z to D^{*-} decay plane and π^+ flight direction in D*+ rest frame • ϕ_{tr} : corresponding azimuthal angle $\frac{1}{\Gamma} \; \frac{\mathrm{d}^3 \Gamma}{\mathrm{d} \cos \theta_1 \mathrm{d} \cos \theta_{\mathrm{tr}} \mathrm{d} \phi_{\mathrm{tr}}} = \frac{9}{16\pi} \; \frac{1}{|A_0^0|^2 + |A_{\parallel}^0|^2 + |A_{\perp}^0|^2}$ $\left\{2\cos^2\theta_1\sin^2\theta_{\rm tr}\cos^2\phi_{\rm tr}|A_0^0|^2\right.$ $+\sin^2\theta_1\sin^2\theta_{\mathrm{tr}}\sin^2\phi_{\mathrm{tr}}|A^0_{\parallel}|^2$ $+\sin^2\theta_1\cos^2\theta_{\rm tr}|A^0_\perp|^2$ $+\frac{1}{\sqrt{2}}\sin 2\theta_1 \sin^2 \theta_{\mathrm{tr}} \sin 2\phi_{\mathrm{tr}} \Re e(A_0^{0*}A_{\parallel}^0) \Big\},$ Integrated over θ_1 and ϕ_{tr} : $\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{\mathrm{tr}}} = \frac{3}{4}(1-R_t)\sin^2\theta_{\mathrm{tr}} + \frac{3}{2}R_t\cos^2\theta_{\mathrm{tr}}.$

Chunhui Chen, University of Maryland

Acceptance Effect

Different transversity component has different acceptance

$$\begin{aligned} \frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{\mathrm{tr}}} &= \\ \frac{3}{4}(1-R_t)\sin^2\theta_{\mathrm{tr}} \times \left\{\frac{1+\alpha}{2}I_{0,0}(\cos\theta_{\mathrm{tr}}) + \frac{1-\alpha}{2}I_{\parallel,\parallel}(\cos\theta_{\mathrm{tr}})\right\} \\ &+ \frac{3}{2}R_t\cos^2\theta_{\mathrm{tr}} \times I_{\perp,\perp}(\cos\theta_{\mathrm{tr}}) \\ R_t &= \frac{|A_{\perp}|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}, \qquad \alpha = \frac{|A_0^0|^2 - |A_{\parallel}^0|^2}{|A_0^0|^2 + |A_{\parallel}^0|^2} \end{aligned}$$

- I_0, I_{\perp}, I_{II} acceptance moments: (eff. Integral over phase space)
 - CP even and odd terms may have different acceptance efficiencies
 - Equal to same constant \Rightarrow acceptance is uniform
 - Model acceptance moments from the MC and fixed the parameter in the fit
 - Acceptance moments does not deviate much from uniform

 $\boldsymbol{\alpha}$ parameter:

- Fixed to zero by default
- $\boldsymbol{\cdot} \ \textbf{R}_{T} \ \textbf{sensitive to} \ \boldsymbol{\alpha} \ \textbf{only if } \ \textbf{I}_{0}, \textbf{I}_{||} \ \textbf{are significant different}$

Acceptance & Angular Resolution Effect

Measurement Result of CP-odd Fraction

A RooPlot of "cos0,,"

PRD-RC 76,111102 (2007) (348fb⁻¹)

 $\textbf{R}_{T} \text{=} \textbf{0.143} \ \pm \textbf{0.034} \pm \textbf{0.008}$

Systematic Uncertainty

Angular resolution	0.0056	
Acceptance Moments	0.0035	
α Parameter scan	0.0026	
Floating bg parameter	0.0006	
Peaking background	0.0039	
Total	0.0084	

➢ Good agreement with previous BaBar & Belle results:
 ✓ R_T=0.125 ± 0.044 ± 0.007 (BaBar: Phys.Rev.Lett.95:151804,2005, 209fb⁻¹)
 ✓ R_T=0.19 ± 0.08 ± 0.01 (Belle: Phys.Lett.B618:34-42,2005,140fb⁻¹)
 ➢ Good agreement with the theoretical calculation (Factorization)
 ✓ R_T ~ 0.06 Phys.Rev.D61:014010,2000, Phy.Rev.D42:3732,1990
 ✓ R_T ~ 0.1 Eur.Phys.J.C46:367-377,2006

Time-dependent CP + Angular Analysis

- \succ If CP analysis by fit Δt only:
 - ✓ S=-(1-2R_T)sin2β
 - \checkmark Loss of statistical power
 - ✓ Need to assume the same C and S for CP-even and Odd components
- > Solution: time-dependent CP and angular analysis (2D PDF)
 - \checkmark Correction for acceptance not necessary if float "R_T"
 - \checkmark No bias for CP parameters

Chunhui Chen, University of Maryland

Chunhui Chen, University of Maryland

University of Pennsylvania, January 18, 2008

CP violation fit result from $B^0 \rightarrow D^{*+}D^{*}$

> Unbinned maximum likelihood fit to m_{ES} , Δt , and $\cos\theta_{tr}$ distributions (79 parameters)

- \checkmark Tagging and Δt resolution parameters fixed from BFlav
- \checkmark Most parameters are determined from data, except
 - Angular resolution
- > Validate fitting procedure using signal & generic MC
 - ✓ No biased for CP parameters

 $\begin{array}{ll} \textit{C}_{+}\texttt{=-0.05}\pm0.14\pm0.02 & \textit{C}_{-}\texttt{=-0.23}\pm0.67\pm0.10 \\ \textit{S}_{+}\texttt{=-0.72}\pm0.19\pm0.05 & \textit{S}_{-}\texttt{=-1.83}\pm1.04\pm0.23 \end{array}$

Assume same C and S for CP-even & odd terms C=-0.02 \pm 0.11 \pm 0.02 $\,$ S=-0.66 \pm 0.19 \pm 0.04 $\,$

Result consistent with SM expectation
 No evidence of direct CP violation

 \checkmark Mix induced CP violation: 3.7 σ

CP Violation in $B^0 \rightarrow D^+D^-$, $D^{*+}D^-$ & $D^{*-}D^+$

> No evidence of direct CP violation

PRL98:221802,2007

 Δt [ps

 $\Delta t [ps]$

Measure sin2 β in b \rightarrow sss (Penguin) Modes

 \mathcal{W}^+

 $\tilde{\mathbf{b}}_{\mathbf{R}}$

 $\overline{U}.\overline{C}$

"Internal Penguin"

E.g.: SUSY contribution

with new phases

5

 K_{s}^{0}

OCDF (Beneke, PLB620 (2005) 143-150; Cheng, Chua, Soni, PRD72 (2005) 094003; ...) and SCET (Williamson, Zupan, hepph/0601214) allows to estimate ΔS : expect positive deviation for almost all modes

some of recent QCDF estimates

Chunhui Chen, University of Maryland

Summary of BaBar/Belle b→s Results

More statistics crucial for mode-by-mode studies

Summary of CKM Phase β Measurement

> β determined at 1 degree precision

 $\checkmark\,$ Based on sin2 β in charmonium modes and cos2 $\beta>0$

> No sign of NP from sin2 β_{eff} measured in B⁰ \rightarrow D^{(*)+}D^{(*)-}

> Possible hints of NP effect from sin2 β_{eff} in penguin mode:

 \checkmark hits of 1-2 σ deviation from SM (need more statistics)

Constraining NP from Flavor (B) Physics

New Physics \Rightarrow New source of CP violation

- E.g. SUSY: 59(41) new CP-conserving (violating) parameters (phases)
- New Physics scale is expected to be ~ 1 TeV

Chunhui Chen, University of Maryland

Current Status of B Physics

> Significant understanding of CP violation in last 10 years

- Firmly established CKM mechanism as the primary source of CP violation we have observed so far in the quark sector.
- Test SM with precise measurements from B factories.
- No obvious sign of deviation from SM.
- Too small to explain the matter & anti-matter asymmetry in Universe
- Any new physics found at the LHC has to obey constraints provided by BaBar and Belle

> More open questions aroused:

- * New Physics flavor puzzle: (why no NP evidence in B if $\Lambda_{NP} \sim 1 \text{TeV}$?)
- CP violation in the lepton sectors ?
- ÷

Looking into the Future

- > The ultimate frontier machine will be the LHC. We may finally have a first clean glimpse of the physics beyond the Standard Model
- > Many interesting physics programs:
- > The ("one of") highest priority (ies):
 - $\checkmark\,$ Search for & observe SM Higgs
 - $\checkmark\,$ Search for & discover NP beyond SM:
 - Pay attention to flavor physics sector:
 - Help disentangle different NP scenarios using precision measurements from flavor physics

- Understand LHC detector
 - $\checkmark\,$ Essential to achieve "ground breaking" discoveries at LHC
- > Ongoing detector R&D for the future HEP experiments
 - $\checkmark\,$ LHC upgrade, ILC and new neutrino experiments etc.
 - $\checkmark\,$ Key to understand the NP seen in LHC and future of particle physics

Conclusion and Prospect

..... the beginning of the 21st century will be as important for physics as the beginning, the first 50 years, of the 20th century, and the LHC is going to be the first machine to make the first discovery

- T.D. Lee

A bright future for particle physics ! We are lucky to be here to make it happen !

Additional Slides for Reference

Important Discrete Symmetries

> Parity, P:

- Reflect a system through the origin, thereby converting right-handed into left-handed coordinate systems
- Thought to be conserved by all the interactions just as C & T symmetries before 1956 (C.S.Wu experiment demonstrate P violation in weak interaction)

> Charge Conjugate, C:

Change particles into anti-particles and vice versa

> Time Reversal, T:

 Reverse the arrow of time, reversing all timedependent quantities, e.g. momentum

Good symmetries of strong and electromagnetic forces

 $\mathbf{r}
ightarrow -\mathbf{r}$

 $\mathbf{p} \rightarrow -\mathbf{p}$

 $L \rightarrow L$

 $e^- \rightarrow e^+$

 $\gamma \rightarrow \gamma$

 $t \rightarrow -t$

+

The Unitarity Triangle

Production of B Mesons

Signal Yield and Purity

PRL 99, 171803 (2007) 348 fb⁻¹ data

- Signal Model: single Gaussian
- > Background: $\eta_f = -1$ and BFlav
 - ✓ Argus function
 - $\checkmark [1-(m_{ES}-m_0)^2]^{1/2} exp[\kappa(1-(m_{ES}-m_0)^2)]^{1/2}$
 - \checkmark endpoint m₀ fixed to 5.2892GeV
- Background: η_f=+1
 - ✓ Using MC and sideband
- > Peaking background
 - ✓ Small contributions
 - ✓ Estimated using large MC

Sample	N_{tag}	P(%)
Full CP sample	12677	75
$J/\psi K_{s}^{0},\psi(2S)K_{s}^{0},\chi_{c1}K_{s}^{0},\eta_{c}K_{s}^{0}$, 6863	9 2
$J/\psi K_z^0$	4748	55
$J/\psi K^{*0}$	1056	66
B_{fluer} sample	123893	85

Identify B Flavor (B tagging)

- > $\Upsilon(4S)$ produce coherent B pair: $\Upsilon(4S) \rightarrow B^0 \overline{B}^0$
- ightarrow B⁰ meson decays to flavor eigenstates ~ 100%
- > Determine the flavor of $B_{tag} \Rightarrow$ infer the initial flavor of B_{rec}
- Effective tagging efficiency at BaBar: 30.4 ±0.3%

Leptons Tag:

Flavour Tagging Performance

- > Multivariate algorithms (neural network) to identify B_{tag} flavor
- > 6 tagging categories defined:

			∆w=w(B ⁰)-w(B ⁰)	Figure of meri [.] Q=ε(1-w²)
Category	ε (%)	w (%)	Δw (%)	Q(%)
Lepton	8.67 ± 0.08	3.0 ± 0.3	-0.2 ± 0.6	7.67 ± 0.13
Kaon I	10.96 ± 0.09	5.3 ± 0.4	-0.6 ± 0.7	8.74 ± 0.16
KaonII	17.21 ± 0.11	15.5 ± 0.4	-0.4 ± 0.7	8.21 ± 0.19
Kaon-Pion	13.77 ± 0.10	23.5 ± 0.5	-2.4 ± 0.8	3.87 ± 0.14
Pion	14.38 ± 0.10	33.0 ± 0.5	5.2 ± 0.8	1.67 ± 0.10
Other	9.61 ± 0.08	41.9 ± 0.6	4.6 ± 0.9	0.25 ± 0.04
All	74.60 ± 0.12			30.4 ± 0.3
	Efficiency	Average Mistag	Mistag Fraction	Effective Tagging
From m _{FS} fit		Fraction	Difference	Efficiency
of BFlav sample	2			<u>I</u>
From ∆t fit of BFlav sample				

Chunhui Chen, University of Maryland

Resolve β & $\pi/2-\beta$ ambiguity in B⁰ \rightarrow D*+D*-K₅

 \checkmark J_0,J_c,J_{s1} and J_{s2}: Amplitude integral over half Dalitz plane s_{\pm} = m^2(D^{\star\pm}K_S)

$$A(t) \equiv \frac{\Gamma_{\overline{B}{}^0} - \Gamma_{B^0}}{\Gamma_{\overline{B}{}^0} + \Gamma_{B^0}} = \eta_y \frac{J_c}{J_0} \cos(\Delta m_d t) - \left(\frac{2J_{s1}}{J_0}\sin 2\beta + \eta_y \frac{2J_{s2}}{J_0}\cos 2\beta\right) \sin(\Delta m_d t),$$

- ✓ η_{γ} = +1(−1) for s₊>s₋ (s₊<s₋)
- $\checkmark \mathbf{J_c/J_0}$: $|a|^2 |\overline{a}|^2$ decay asymmetry in half Dalitz plane between B⁰ & B⁰
- ✓ $2J_{s1}/J_0$: $\mathcal{R}e(\bar{a}a^*)$ dilution due to mixing of CP-even and odd states
- $\checkmark 2J_{s2}/J_0: Im(\bar{a}a^*)$ predicted to be positive in theory
- > Model-dependent interpretation:
 - \checkmark depending on the existence of broad D+ $_{s1}$ resonance contribution
 - \checkmark Measure $J_c/J_0 \neq 0$ indicate "unknown" broad D_{s1} resonance

Chunhui Chen, University of Maryland

Resolve $\beta \& \pi/2 - \beta$ ambiguity in $B^0 \rightarrow D^{*+}D^{*-}K_s$ (a) Events / 1.0ps Phys.Rev.D74:091101,2006 (209fb⁻¹ data) B⁰ tags $\Box \overline{B}^{0}$ tags Significantly $\neq 0 \Rightarrow$ evidence of broad resonance D⁺_{s1} with large Raw asymmetry (b) (s₊<s_) Contribution to the decay η_v= 0.5 ۵ -0.5 $= 0.76 \pm 0.18(\text{stat}) \pm 0.07(\text{syst})$ (c) Events / 1.0ps B⁰ tags $\frac{2J_{s1}}{J_0}\sin 2\beta = 0.10 \pm 0.24(\text{stat}) \pm 0.06(\text{syst})$ 15 \overline{B}^{0} tags 10 $\frac{2J_{s2}}{J_0}\cos 2\beta = 0.38 \pm 0.24(\text{stat}) \pm 0.05(\text{syst})$ Raw asymmetry (d) 0.5 $\cos 2\beta > 0$ at 94% CL if $J_{s2}/J_0 > 0$ Model dependent interoperation η **+1** (s₊>s_) -0.5

Consistent with SM expectation Consistent with other measurements

-5

0

5

∆ t [ps]

-1

$B^0 \rightarrow D^{(*)+}D^{(*)-}$ Signal Reconstruction

> Many sub decay modes used for $B^0 \rightarrow D^{(*)+}D^{(*)-}$ reconstruction (22 modes) $\checkmark D^{*-}$ modes: $D^0\pi^-$, $D^-\pi^0$

- \checkmark D+ modes: K- $\pi^+\pi^-$, K_S π^+ , K-K+ π^-
- \checkmark D° modes: K- π^+ , K- $\pi^+\pi^0$, K- $\pi^+\pi^-$, K_S $\pi^+\pi^-$
- \checkmark At least one of $D^{\star \star} {\rightarrow} D^0 \pi^{\star}$

> Reduce background using ΔE and "mass Likelihood" L_{mass}

- $\checkmark \mathsf{L}_{\mathsf{MASS}} = G(\mathsf{m}_{\mathsf{D0}}) \times G(\mathsf{m}_{\mathsf{D0}}) \times G(\mathsf{m}_{\mathsf{D^{*}}}) \times G(\mathsf{m}_{\mathsf{D^{*}}})$
- \checkmark Mass constraint for D^ and D+ afterwards
- \checkmark Optimize ΔE and L_{mass} cuts using MC for each sub decay modes
- \checkmark After applying cuts, select best candidate based on L_{mass} per event
- ~ ~1.1-1.8 candidate per event, >95% correct selection

> Other variables: CLEO fisher, Dalitz weight, D decay length significance

- \checkmark Not necessary for B⁰ \rightarrow D*+D*- mode
- \checkmark Useful for BO \rightarrow D*+D-, D*-D+, and D+D- modes

CP violation result from $B^0 \rightarrow D^{*+}D^-$ & $D^{*-}D^+$

