Dibosons at the Energy Frontier Finding Heavy Dibosons and the Search for $H \rightarrow WW$ at CDF

Elliot Lipeles University of California, San Diego

University of Pennsylvania January 22, 2008

Outline

- Introduction
 - Lightning Review of Electroweak
 - Diboson and Multilepton Motivation
- Hadron Collisions and the CDF Experiment
- Improvements in Multilepton Technique at CDF
- First Observation of WZ Production
- Search for Higgs Decaying to WW using Matrix Element Probability Calculations
- First Measurement of ZZ at a Hadron Collider

• The Proton and the Neutron are *almost* the same except for charge

		Mass	Spin	EM Charge
(p)	Proton	938.27 MeV/c ²	$\frac{1}{2}$	+1
(n)	Neutron	939.56 MeV/c ²	$\frac{\overline{1}}{2}$	0

- There is a symmetry between them
 - But it's a "broken" symmetry
- Weak nuclear interactions, e.g. "β-decay", can transform one to the other

The Standard Model of particle physics says:

There is an electroweak symmetry and it's broken by the Higgs.

...okay, it's not quite that simple

- Proton and Neutron are not fundamental particles
- Same strong, QCD, couplings hides the size of the symmetry is broken
 - Most of the mass is of p and n are in gluons and "sea" quarks (non-valence)

 Larger symmetry SU(2)_L ⊗ U(1)_Y is broken, but U(1)_{em}, the electromagnetic guage, symmetry is left

The Ingredients of Electroweak Symmetry Breaking

The Group Structure: $SU(2)_L \otimes U(1)_Y$

- Relationships between the masses and couplings of the W and Z
- Triple and quartic gauge coupling predictions

The Agent of Electroweak Symmetry Breaking: Higgs

- Single scalar Higgs is Occam's razor
- Indirect limits $m_H < \sim 180 \text{ GeV}/c^2$
- Direct limits $m_H > 114 \text{ GeV}/c^2$
- $H \rightarrow WW$ covers a lot of this range

Measuring How Bosons Couple to Each Other

Diagrams Contributing to Diboson Production

t-channel

- Boson to Fermion Couplings
- Tested extensively in
 - nuclear β -decay
 - μ , τ decay
 - Strange, charmed, and bottom decay
 - W/Z production and decay

Highest energies are at Tevatron

s-channel

- Boson to Boson Couplings:
- Indirect tests (\approx low energy):
 - $(g-2)_{\mu}, b \rightarrow s\gamma$
 - Atomic parity violation
 - Precision Z measurements
- Direct tests in Dibosons
 - WW and ZZ at LEP
 - WZ isolates WWZ vertex

Demonstrate and Push Sensitivity

Finding very small multilepton signals

Now sensitive to pair producing heavy electroweak particles

Diboson Status as of February 2006

Example

- Search for WZ in 3 leptons + a not easily detected neutrino
- 3 leptons + neutrino + two not easily detected neutralinos

 $\bar{\chi}_2^0$

SUSY Golden Mode

ū

Elliot Lipeles (UCSD)

The Broad View Heavy Diboson Physics

Possible New Physics

Topics selected for this talk

- WZ production
- Search for $H \rightarrow WW$
- ZZ production

The Experiment

The Tevatron provides $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV

- 1.9 fb⁻¹ used in this talk
- > 2.5 fb⁻¹ on tape
- estimates are $\approx 3.5 \text{ fb}^{-1}$ for Summer 08
- Could be as much as 5-6 fb⁻¹ in 2009

 $\begin{array}{ll} \approx & 10,000,000 & W \rightarrow I\nu \\ \approx & 1,000 & WW \rightarrow I I \nu \nu \\ \approx & 12 & ZZ \rightarrow I I I I \end{array}$

where I=e or μ

Hadron Collisions are Complicated

 Electroweak Physics and Perturbative QCD

- Nonperturbative QCD
 - Lots of different topologies and effects

- Parton Distribution Functions \equiv Structure of the Proton
 - All the events are "boosted" along the beam line:

$$\eta = -\log(\tan(\theta/2))$$

 $\eta = \mathbf{0}$: Transverse to beam $\eta \to \infty$: Parallel to beam

- θ is the angle of the particle relative to the beam line
- For massless particles differences in η invariant under z-boost

Elliot Lipeles (UCSD)

The CDF Detector

- Segmented sampling calorimeters
- Shower maximum detectors
 - Shower shape measurement
 - Central: gas-based
 - Forward: scintillator

Elliot Lipeles (UCSD)

Heavy Dibosons and $H \rightarrow WW$ at CDF

Penn, January 22nd, 2008

• CMU & CMP ($|\eta| < 0.6$)

• CMX ($0.6 < |\eta| < 1.0$)

Muon Chambers

12/71

The CDF Tracking Volume

• Silicon coverage out to $|\eta| < 2.0$

- Drift layers crossed decreases from 100% at $|\eta| <$ 1 to 0 at $|\eta| <$ 2
- Central tracking $|\eta| < 1$: efficiency \approx 100% (Outside-In=OI)
- Silicon-seed tracks (Inside-Out=IO)
 - Increase high η tracking efficiency
- Forward electrons use shower seeded tracks

Choosing a Decay Mode to Use

Fully Leptonic

- Small branching fractions
- Low backgrounds
- Controllable backgrounds

Semileptonic

- ${\color{black}\bullet} \approx 5-10\times$ branching fractions
- $\bullet \ \approx 1000 \times \ backgrounds$
- Complicated detector and nonperturbative physics in backgrounds

Technique Overview

Finding electrons, muons, and neutrinos

- ≈ 1000 times more jets than leptons!
 - hadronic fluctuations
 - decaysfragign lacements
 - heavy flavor
 - $\bullet\,$ fakes either e or $\mu\,$
- Wγ and Zγ still 100 times bigger
 - photons convert to *e*⁺*e*⁻ in material

- E_T: Measure neutrinos with transverse momentum balance
 - "Missing Transverse Energy"
 - EM and hadronic components measured in calorimeters
 - Corrected for muons

Technique Overview: Isolation

Powerful handle to separated leptons from boson decay from fake or real leptons from hadronic processes

- Real Leptons from Boson Decay
 - Electrons from converted photons from diboson decays also isolated

Fake or Real Leptons in Jet

 Real leptons in jets from favor decay (π, K, D, B,...) and photon conversions

Cut: non-lepton related energy <10% of the lepton energy in the cone

Elliot Lipeles (UCSD)

The Starting Point Lepton Types used in Typical CDF Analyses

Increase acceptance by...

- Use nearly every track and electromagnetic shower found
- Use as much information as possible for each candidate

Elliot Lipeles (UCSD)

Heavy Dibosons and $H \rightarrow WW$ at CDF

2

a

-1

-2

-3

-2

Standard Muon Id

μ chambers CMUP and CMX

Minimum Ionizing Tracks

- Penn, January 22nd, 2008 1
 - 17/71

2

Increasing Electron Acceptance

- Fiducial to central shower max
- Forward Electrons
 - Fiducial to forward shower max
 - With or without a silicon-base track

Isolated Tracks

If not fiducial to a shower max detector

All fiducial electromagnetic showers used, Tracks fill in fiducial edges

Elliot Lipeles (UCSD)

Increasing Muon Acceptance

All tracks with drift chamber hits used including very forward tracks

Elliot Lipeles (UCSD)

Check the Selections using the Z-peak

Elliot Lipeles (UCSD)

First Observation of WZ Production

- Define selection for candidate events
- Construct a model of the signals and backgrounds
- Test the model
- Look at the results

Event Selection for $WZ \rightarrow III\nu$

- 3 leptons from types just shown

 - two more with $p_T > 10 \text{ GeV}$
- 4 Different Triggers: Two central deter μ, Central e, Forward e + E_T hadronic
- Missing transverse energy *E*_T>25 GeV
 - Indicates presence of neutrino
- One pair of same-favor opposite-sign leptons consistent with Z-mass
 - 76 < *m*_{||} < 106 GeV
 - Tracks without calorimeter information can be either flavor
 - Showers without tracks can be either charge

Event Selection for $WZ \rightarrow III\nu$

- ZZ veto: No tracks in event makes a Z-mass with any of the 3 leptons
- min $\Delta \phi(E_T, I \text{ or jet})) > 0.16$
 - Assures quality of *E_T*
- Optimized selection using independent background samples

Signal and Background Modeling

Monte Carlo Derived Contributions

- WZ, ZZ, $Z\gamma$ (special generator), $t\overline{t}$: Pythia + GEANT
- Correct with measured lepton id efficiency and conversion rate

Data Derived Estimate of Z+jets Background

- Measure rate jets are misidentified as leptons in multi-jet QCD data
 - not many real leptons in jet data
 - Assumes jets in multi-jet events are the same as in Z+jets
 - Select jets where this is more likely to be true \rightarrow "denominator"
- 1 Calculate in the jet data

Fake Rate =
$$\frac{\#\text{Identified Leptons}}{\#\text{Denominator Objects}}$$

- 2 Correct for *W* and *Z* contamination using Monte Carlo
- 3 Scale data Z+"denominator object" events by measured fake rate

Elliot Lipeles (UCSD)

Heavy Dibosons and $H \rightarrow WW$ at CDF

24/71

Control Regions: Testing the Sample Modeling

Elliot Lipeles (UCSD)

WZ Signal Region

Elliot Lipeles (UCSD)

WZ: Sensitivity to WWZ vertex

- No time to discuss this in this talk
- See Fermilab Wine and Cheese on February 1st

Elliot Lipeles (UCSD)

Search for a Higgs Decaying to WW*

- Overview of Experimental Issues
- Sample Selection
- Event Probability Calculations
- The Result
- The Future of $H \rightarrow WW^*$

Why is the Higgs so hard to find?

The problem

- Things that couple strongly to the Higgs have large masses
- Things with large masses decay (subject to quantum numbers)
- We can only collide long-lived particles

Some of the possible solutions...

Produced the Higgs via heavy quark loops $gg \rightarrow H$

q W,Z q W,Z

- Again the Higgs couples to heavy stuff which decays...
- $H \rightarrow b\overline{b}$ has huge QCD backgrounds
 - Only via in associated production
- $H \rightarrow WW^*$ is under the $q\overline{q} \rightarrow WW^*$

The Higgs is underneath the needle in the haystack

Event Selection for $(H \rightarrow)WW \rightarrow II\nu\nu$

- Same as WZ, but with one less lepton
 - Throw out loosest lepton categories
 - Add extra isolation cut
- 2d cut for *E*_T not along lepton directions
- $N_{\rm jets} < 2$ to get rid of $t\bar{t}$

Everything in this plot is a background ! plus $t\overline{t} \rightarrow WWb\overline{b}$!

Elliot Lipeles (UCSD)

Heavy Dibosons and $H \rightarrow WW$ at CDF

Penn, January 22nd, 2008

Controls Regions

- Same event selection but with same-sign leptons
- Tests model of jet or γ misidentified as leptons
 - Both component 25% systematics

∉_T sin(∆ φ_{∉_T, nearest lepton or jet}) [GeV]
 Events with lots of hadronic activity

- Tests E_T modeling

Elliot Lipeles (UCSD)

$WW \rightarrow I I \nu \nu$ and $H \rightarrow WW \rightarrow I I \nu \nu$

Predicted Higgs Yields

Higgs Mass (GeV)											
110	120	130	140	150	160	170	180	190	200		
0.4	1.3	3.0	4.8	6.4	7.8	7.6	6.2	4.4	3.5		

33/71

How do we exploit it all?

Elliot Lipeles (UCSD)

The Matrix Element Calculation

Event-by-event probability density using the full kinematic information

$$P(\vec{x}_{obs}) = \frac{1}{\langle \sigma \rangle} \int \frac{d\sigma_{th}(\vec{y})}{d\vec{y}} \epsilon(\vec{y}) G(\vec{x}_{obs}, \vec{y}) d\vec{y}$$

Theory at leading order

 $\sigma_{th}(\vec{y})$ leading order calculation of the cross-section \vec{y} true lepton four-vector (include neutrinos)

What we measure

 \vec{x}_{obs} observed "leptons" and $\vec{E_T}$ Detector Effects

 $\epsilon(\vec{y})$ total event efficiency × acceptance $G(\vec{x}_{obs}, \vec{y})$ resolution effects

- Integration over missing neutrino information
- Photons and jets additional factor = fraction detected as leptons
- Modeled modes: WW, ZZ, Wp \rightarrow W + fake, W $\gamma \rightarrow$ We_{conv}

Elliot Lipeles (UCSD)

Using the Calculated Probabilities

$$LR = rac{P_{Higgs}(M_H)}{P_{Higgs}(M_H) + \sum_{j} f_{\mathrm{bkg},i} P_{\mathrm{bkg},i}}$$

- Fit using a 1-d histogram
- Models don't have to be perfect
- Don't have to model everything
 - Small difficult to model backgrounds: Drell-Yan
 - Next-to-leading order effects...

First a cross-check ...

Treat Backgrounds as Signal in Likelihood Ratio

Likelihood Ratio Discriminant

$M_H(GeV/c^2)$	110	120	130	140	150	160	170	180	190	200
$\sigma_{NNLL}(pb)$	0.06	0.13	0.23	0.31	0.36	0.39	0.34	0.28	0.19	0.16
median(pb)	3.9	2.9	2.5	2.2	1.8	1.2	1.1	1.3	1.4	1.6
Observed(pb)	4.7	2.8	1.6	1.5	1.1	0.8	0.8	0.8	1.4	1.8
Expected/ σ_{NNLL}	68.8	21.9	10.7	7.0	5.0	3.1	3.2	4.7	7.0	10.0
Observed/ σ_{NNLL}	81.9	20.6	7.0	4.7	3.2	2.0	2.4	3.0	7.0	11.7

Elliot Lipeles (UCSD)

Heavy Dibosons and $H \rightarrow WW$ at CDF

Penn, January 22nd, 2008

The Standard Model is not the Only Model

New particles or interactions enter through the loop in the ggH coupling

Elliot Lipeles (UCSD)

Result with Rest of the Tevatron SM Higgs Program

CDF II Preliminary

The Future of $H \rightarrow WW^*$

At the Tevatron:

- 2-3 \times more data (5-6 fb) + Combination with DØ
- Add τ leptons, lower p_T cuts, reducible backgrounds
- ⇒ with in a factor of 1-2 of the SM

At the LHC

	Tevatron	LHC		
	\sqrt{s} = 1.96 TeV	$\sqrt{s} = 14 \text{ TeV}$	Ratio	Authors
$H \rightarrow WW^*$	0.4 pb	26.4 pb	≈ 60	Catani, et al.
$q\overline{q} ightarrow WW$	13.5 pb	127 pb	\approx 9.4	Campbell & Ellis

 \Rightarrow 1 fb of LHC data is worth 20 fb of Tevatron data

 $(m_H = 160 \text{ GeV}/c^2)$

Personal Perspective

Why do the Tevatron?

- Enhancements are possible, and we may rule out some SM range
- Learn the technique in the real world
- We are already constraining deviations in the WW model a factor of 2-3 times smaller than the effect of H → WW* at LHC

First Measurement of ZZ Production at a Hadron Collider

Two modes are better than one

pie chart includes τ s as leptons

- Very small cross-section $\sigma(p\overline{p} \rightarrow ZZ) = 1.4 \ pb$
- Only using e or μ leptons

- Two viable modes
- $ZZ \rightarrow 4$ leptons
 - Very clean
 - Very small BR:
 - $(2 \times 0.033)^2 = 0.0044$

• $ZZ \rightarrow II \nu \nu$

- 6 times larger BR: 2×0.2×(2×0.033) = 0.026
- Several significant backgrounds WW, WZ, Drell-Yan
- Use Matrix Elements to discriminate signal and background
- The strategy is to combine this into one result

44/71

Selection

- 4 leptons from the same types used for WZ
 - one with $p_T > 20$ GeV for triggering
 - three more with $p_T > 10 \text{ GeV}$
- 3 Triggers: Two central muon and central electron
- 1 lepton pair: 76 < *m*_∥ < 106 GeV
- 1 lepton pair: 40 < m_{ll} < 140 GeV</p>

Dominant backgrounds

- Z+jets where two jets are misidentified as leptons
- $Z\gamma$ +jets where the γ and a jet are misidentified as leptons
- Trackless electrons have a much higher background than other lepton types
- ullet \Rightarrow divide into two channels with and without trackless electrons

The $ZZ \rightarrow IIII$ Background Modeling

Z+jets and $Z\gamma$ +jets modeled like the Z+jets background in WZ...

- Measure, in multi-jet data, the rate p(j_l) a lepton-like jet ("denominator"), j_l, is identified as a lepton
- Apply in a sample of 3 leptons + j_l in data

Background =
$$\sum_{3l+j_l \text{ in data}} p(j_l)$$

- Includes where one of the 3 identified leptons was actually a γ Subtleties
- Double counting of Z+jets (two fakes) due to combinatorics
 Very small number of 3*I* + *j_I* actually contaminated by ZZ

 ⇒ redefine *j_I* with an anti-isolation cut to suppress real leptons

 Very small number of 3*I* + *j_I* means poor sampling of *p*(*j_I*) space
 Estimate background/variance using a set of possible expected *p*(*j_I*) distributions consistent with those observed

The $ZZ \rightarrow IIII$ Yields

$ZZ \rightarrow II \nu \nu$ with Matrix Elements

• Same selection as used for $H \rightarrow WW$

• With added cut on hadronic activity: $\frac{E_T}{\sqrt{\sum E_T}} > 2.5 \ GeV^{\frac{1}{2}}$, because

of larger sensitivity to Z + fake E_T backgrounds

- Only *ee* and $\mu\mu$ channels are used (No flavor changing neutral currents)
- Same Matrix Element calculation as used for *H* → *WW*

$$LR \equiv \frac{P_{ZZ}}{P_{ZZ} + P_{WW}}$$

- Plot log₁₀(1 LR) to avoid binning away "Golden Events"
- Most of phase-space has too much background

$ZZ \rightarrow II \nu \nu$ with Matrix Elements

Combined Result	S			
		ΙΙνν	4 lepton	Combined
Significance	P-Value	0.12	$1.1 imes 10^{-5}$	$5.1 imes 10^{-6}$
	Significance	1.2 σ	4.2 σ	4.4 σ
Measured Cross-Section	$1.4^{+0.7}_{-0.6}$ (<i>stat</i> .+	syst.) pl	o (NLO predic	tion is 1.4 pb)

4.4 σ signal for ZZ!

A ZZ to 4 Muon Candidate

Elliot Lipeles (UCSD)

Heavy Dibosons and $H \rightarrow WW$ at CDF

Penn, January 22nd, 2008

51/71

Most likely $ZZ \rightarrow II \nu \nu$ event

Summary

A Comprehensive Approach to Heavy Diboson Decaying Leptons

- First Observation of *WZ* Production
 - 16 events is 5.9 σ signal with 1.1 fb⁻¹
 - Now updated to 25 events
- 4.4 σ Signal for ZZ Production
 - Combined IIII and $II\nu\nu$
- Higgs $\rightarrow WW$ Limits Closing in on the SM
 - Ruling out real possibilities of enhancements on the way

Now pair producing electroweak bosons in significant numbers

The Energy Scale at the Tevatron

E_T Example: Finding $(H \rightarrow)WW \rightarrow II\nu\nu$

Neutrinos show up as missing transverse energy $\not E_T$ *WW* will produce $e\mu$ events, while Drell-Yan is only ee and $\mu\mu$

Beam's Eye View of CDF

Calorimeter Unrolled

Elliot Lipeles (UCSD)

Heavy Dibosons and $H \rightarrow WW$ at CDF

Penn, January 22nd, 2008 55 / 71

Backup: WZ Results

Previous CDF Results

NLO Theory: $\sigma(WZ) = 3.7 \pm 0.3 \ pb$ (Campbell,Ellis)

$WZ \rightarrow III\nu : DØ$, First Evidence

- 760 860 *pb*⁻¹ of data
- Observed 12 evts!
- Expected 7.5 \pm 1.2 signal and 3.6 \pm 0.2 background
- 3.3σ evidence
- σ(WZ) = 4.0^{+1.9}_{-1.5} pb
 NLO σ(WZ) = 3.7 ± 0.3 pb

WZ Candidate Transverse Mass

Elliot Lipeles (UCSD)

Heavy Dibosons and $H \rightarrow WW$ at CDF

58/71

- Use 2 bins in E_T
 - 25 < 𝔼_T < 45 GeV and 𝔼_T >45 GeV
- Find most likely yield...

 $\Delta \ln \mathcal{L} = \ln \mathcal{L}_{N_{signal}=0} - \ln \mathcal{L}_{best \ fit}$

- Bins were optimized a priori for expected significance
- Do 1 *billion* background only pseudo-experiments
 - Only 2 less likely to be background than our signal

Signifi cance is 5.9 σ

More WZ Distributions

Heavy Dibosons and $H \rightarrow WW$ at CDF

Elliot Lipeles (UCSD)

The WZ 2-d plot

Heavy Dibosons and $H \rightarrow WW$ at CDF Penn, January 22nd, 2008

Elliot Lipeles (UCSD)

Sample eee Event

Sample $e\mu\mu$ Event

Backup: Higgs

Precision Electroweak Constraints

Elliot Lipeles (UCSD)

2-d E_T and min $\Delta \phi(E_T, I \text{ or jet})$ Cut

$II \nu \nu$ Yields

Flavor	WW	WZ	ZZ	tī	DY	$W\gamma$	W+jets	Total	Data
ее	46.6	5.3	8.2	2.9	26.6	27.2	22.8	139.5	144
$e \mu$	110.1	3.2	0.5	7.0	22.5	23.8	24.1	191.1	191
$\mu \mu$	36.0	4.1	6.7	2.7	17.6	0.0	3.1	70.1	58
e trk	37.8	26	33	26	10.3	65	10.9	73.9	80
Elliot Lipeles (UCSD)			Heavy D	ibosons an	$d H \rightarrow W V$	V at CDF	Penn, Janua	ry 22nd, 2008	67/71

	WW	WZ	ZZ	tī	DY	$W\gamma$	W+jets	Higgs
E _T Modeling	1.0	1.0	1.0	1.0	20.0	1.0	-	1.0
Conversions	-	-	-	-	-	20.0	-	-
NLO Acceptance	5.5	10.0	10.0	10.0	5.0	10.0	-	10.0
Cross-section	10.0	10.0	10.0	15.0	5.0	10.0	-	-
PDF Uncertainty	1.9	2.7	2.7	2.1	4.1	2.2	-	2.2
Lepld $\pm 1\sigma$	1.5	1.4	1.3	1.5	1.5	1.2	-	1.5
Trigger Eff	2.1	2.1	2.1	2.0	3.4	7.0	-	3.3
Total	11.9	14.7	14.6	18.4	21.9	25.6	22.5	10.9

- WW NLO acceptance: MC@NLO vs Pythia (LO with parton shower model)
- Conversion-veto efficiency measured in data
- E_T Modeling from the high E_T , high hadronic activity modeling
- PDF using standardized procedures from CTEQ
- Fake rates from variations of the fake probability sample

ZZ Statistical Procedure

Inputs

- 1-d histogram of IIE_T LR with background model
- 2 1-bin histograms for the two four lepton channels
 - Statistical error and systematics errors included with expected correlations
- Test Statistic = Likelihood Ratio
 - All contributions floating with Gaussian constraints determined by the systematics
 - ZZ floating = test hypothesis (value \rightarrow cross-section)
 - ZZ fixed to zero = null hypothesis

$$\mathit{ts} = (-2 \ln \mathcal{L}_{\mathit{ZZ free}}) - (-2 \ln \mathcal{L}_{\mathit{ZZ fixed}})$$

- 10 million pseudo experiments
 - Bin statistics and systematics varied

 $p-value = \frac{\text{# of background experiments with larger } ts \text{ than data}}{\text{# pseudo-experiments generated}}$

WZ: The SUSY Golden Mode's Mirror Image

70/71

Or maybe SUSY itself, or Technicolor, or W' ...

SUSY decaying on-shell WZ

There is always the unknown