Looking for New Physics in the B_s -Meson System

Dmitri Tsybychev (SUNY at Stony Brook) University of Pennsylvania HEP seminar January 11, 2008

Outline

- Introduction
- B_s mixing
- Tevatron and DØ detector
- Δm_s
- $\Delta\Gamma$ and ϕ_s
- Summary

Standard Model

Preliminary

UPenn HEP seminar

D. Tsybychev

Physics Beyond the Standard Model

- Source of electroweak symmetry breaking
 - Higgs?
- Gravity not a part of the SM
- Grand unification
 - What is the origin of universe?
- Where is the Antimatter?
 - Why is the observed universe mostly matter?
- Dark Matter, Dark Energy?
 - Astronomical observations indicate that there is more "stuff" than we see
- Look for new physics that would explain these questions:
 - SUSY, Extra Dimensions ...

Neutral Mesons

- Meson consist of quarkantiquark pair held together by strong force
 - Charged, neutral
- Particle ↔ antiparticle oscillation
 - Spontaneously transform themselves into their own antiparticles
 - First pointed out by Gell-Mann and Pais in 1955 (Phys. Rev. 97,1387 (1955))

History of Mixing

• Mixing in K⁰ system

- → charm quark
 discovery of charge and
 parity violation (CPV)
 third generation
- Mixing in B_d system \rightarrow early indication of
 - a heavy top
- Mixing in neutrino system → neutrinos are massive
 Mixing in the B_s system → new physics ?

The Cabibbo-Kobayashi-Maskawa Matrix
• Quark Weak
$$\neq$$
 Mass Eigenstates

$$L = \frac{g}{\sqrt{2}} (\overline{u, c, t})_L V_{CKM} \gamma_{\mu} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_L W^{\mu} + h.c.$$

$$\underbrace{\forall e^{Q}}_{s} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{d} & V_{ts} & V_{ub} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_L$$

$$\underbrace{\forall e^{Q}}_{s} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{d} & V_{ts} & V_{ub} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\underbrace{\forall e^{Q}}_{s} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{d} & V_{ts} & V_{ub} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\underbrace{\forall e^{Q}}_{s} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{ub} \\ V_{d} & V_{ts} & V_{ub} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\underbrace{\forall e^{Q}}_{s} \begin{pmatrix} d \\ s \\ d \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{ub} \\ V_{d} & V_{ts} & V_{ub} \end{pmatrix} \begin{pmatrix} d \\ s \\ d \end{pmatrix}$$

$$\underbrace{\forall e^{Q}}_{s} \begin{pmatrix} d \\ s \\ d \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{ub} \\ V_{d} & V_{ts} & V_{ub} \end{pmatrix} \begin{pmatrix} d \\ s \\ d \end{pmatrix}$$

$$\underbrace{\forall e^{Q}}_{s} \begin{pmatrix} d \\ s \\ d \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{d} & V_{ts} & V_{ub} \\ V_{d} & V_{ts} & V_{ub} \end{pmatrix} \begin{pmatrix} d \\ s \\ d \end{pmatrix}$$

$$\underbrace{\forall e^{Q}}_{s} \begin{pmatrix} d \\ s \\ d \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{d} & V_{ts} & V_{ub} \\ V_{d} & V_{d} & V_{d} & V_{d} \\ V_{d} & V_{d} & V_$$

Weak

\Rightarrow Unitary:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

- \Rightarrow CKM Mixing Matrix:
 - 3 angles
 - 1 complex phase \Rightarrow CP-violation

$$V_{ub} \neq V_{ub}^*, V_{td} \neq V_{td}^* \implies CPV$$

• CPV requires $m(q_i) \neq m(q_j)$

 $\begin{pmatrix} d \\ s \\ s \\ b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} & d \\ V_{cd} & V_{cs} & V_{cb} & s \\ V_{td} & V_{ts} & V_{tb} & b \end{pmatrix}$

Unitarity Triangle

• Vector sum in complex plane

- In SM, has to be closed $(\alpha+\beta+\gamma=180^{\circ})$
- Area of triangle indicates
 CP violation in SM due to
 CKM complex phase
 - Measure all sides
- Measure all angles
- Are they consistent?

The CKM Triangle (2005)

Δm_s and V_{td}

Rule out large new physics effects: DØ Collab. PRL 97 021802 (2006) Precision SM measurement: CDF Collab. PRL 97 242003 (2006)

$$B_{s}^{0}-\overline{B}_{s}^{0} \text{ Mixing and } V_{td}$$

• B_{d}^{0}(\overline{bd}) \text{ oscillation frequency:}

$$\Delta m_{d} = \frac{G_{F}^{2}}{6\pi^{2}}m_{B_{d}}m_{t}^{2}F\left(\frac{m_{t}^{2}}{m_{W}^{2}}\right)B_{B_{d}}f_{B_{d}}^{2}\eta_{QCD}|V_{tb}^{*}V_{td}|^{2}\overline{B}_{d}^{0}\underbrace{W^{+}}_{\overline{B}_{s}}\underbrace{W^{-}}_{\overline{d},\overline{s}}V_{td}^{*}\overline{u},\overline{c},\overline{t}}\overline{b}$$
Well measured

$$\Delta m_{d}=0.509\pm 0.004 \text{ ps}^{-1}$$
Want

• Dominant theoretical uncertainties cancel in the ratio \Rightarrow

 $\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s} f_{B_s}^2 B_{B_s}}{m_{B_d} f_{B_d}^2 B_{B_d}} \cdot \left| \frac{V_{ts}}{V_{td}} \right|^2$

Measure Δm_s

Smaller uncertainty

 Light and heavy B meson mass eigenstates differ from flavor eigenstates:

$$|\mathbf{B}_{\mathrm{L}}\rangle = p|\mathbf{B}^{0}\rangle + q|\overline{\mathbf{B}}^{0}\rangle$$
$$|\mathbf{B}_{\mathrm{H}}\rangle = p|\mathbf{B}^{0}\rangle - q|\overline{\mathbf{B}}^{0}\rangle$$

$$\hat{H} \begin{bmatrix} B^{0} \\ \bar{B}^{0} \end{bmatrix} = \begin{bmatrix} M - 1 \\ M_{12}^{*} \end{bmatrix}$$

1 1 1

$$\frac{\frac{\mathrm{i}\Gamma}{2}}{\frac{\mathrm{i}\Gamma_{12}^{*}}{2}} \frac{M_{12}-\frac{\mathrm{i}\Gamma_{12}}{2}}{M-\frac{\mathrm{i}\Gamma}{2}} \begin{bmatrix} B^{0}\\ \overline{B}^{0} \end{bmatrix}$$

$$\Delta m_s = M_H - M_L \cong 2|M_{12}|$$

$$\Delta \Gamma_s = \Gamma_L - \Gamma_H \cong 2|\Gamma_{12}|\cos\varphi_s$$

$$\varphi_s = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right); \quad A_{SL} = \operatorname{Im}\frac{\Gamma_{12}}{M_{12}} = \left|\frac{\Gamma_{12}}{M_{12}}\right|\sin\varphi_s$$

Measure all three at Tevatron

Standard Model and New Physics

- Γ_{12}^{s} governs decays (tree level)
 - No New Physics expected
- $B_{s}^{0} \bullet M_{12}^{s}$ governs oscillations (loop level)
 - Sensitive to New Physics
 - New CP-violating phase

$$\bullet \, \varphi_{s} = \, \varphi_{s}^{SM} + \, \varphi^{NP}$$

•
$$M_{12}^{s} = M_{12}^{SM} \cdot \Delta_{s}, \quad \Delta_{s} = |\Delta_{s}| e^{i\phi NP}$$

- \bullet Reduced Δm_s
- $\Delta_s=1$ in SM
- $\Delta \Gamma_{s} = \Delta \Gamma_{s}^{SM_{\bullet}} |\cos \phi_{s}|$
 - Reduced width

B_{s}^{0} - \overline{B}_{s}^{0} Mixing

$$P(B \to B) = \frac{e^{-\Gamma t}}{2} \left(\cosh \frac{\Delta \Gamma t}{2} + \cos \Delta m t \right)$$
$$P\left(B \to \overline{B}\right) = \frac{e^{-\Gamma t}}{2} \left(\cosh \frac{\Delta \Gamma t}{2} - \cos \Delta m t \right)$$

• Assume $\Delta \Gamma = 0$

$$P_{u,m}(t) = \frac{1}{2} \Gamma e^{-\Gamma t} \left(1 \pm \cos \Delta m t \right)$$

 ∆m_s large → measurement experimentally very challenging

Analysis Overview

Effect of Flavor Tagging

Effect of Resolution

• Proper decay time resolution has contribution from decay length (L_T) and boost

$B_{s}^{0}-\overline{B}_{s}^{0}$ Oscillations Measurement

$$A(t_{B_s}) = \frac{N^{non-osc}(t_{B_s}) - N^{osc}(t_{B_s})}{N^{non-osc}(t_{B_s}) + N^{osc}(t_{B_s})} \propto \cos(\Delta m_s \cdot t_{B_s})$$

Tevatron and DØ Detector

The Tevatron Accelerator

World's highest energy collider

- 2008?
- Proton-antiproton synchrotron
- Experiments CDF and DØ
- Run II (2001-200?)
 - √s = 1.96 TeV
 - Current peak luminosity \mathcal{I} ~30.0 x 10³¹ cm⁻²s⁻¹
 - Expect up to $L = \int \mathcal{I} dt = 8 \text{ fb}^{-1}$ integrated luminosity in Run II
 - Number of events = L σ
- Large pp cross-section
 - Trigger is important

Excellent Tevatron Performance

DØ Detector

- General purpose detector
- Excellent coverage of Tracking and Muon Systems (|η|<2)
- Excellent vertex resolution
- 2T Solenoid

DØ Detector

Signals transferred to readout chips using low mass analog cables

48 modules mounted on carbon fiber support structure

Four silicon sensor types provide 98.4% of acceptance

SVX4 readout chips

Layer 0

Installed inside existing DØ silicon detector

- First sensor at r=16 mm
- Outstanding noise performance for this type of device
 - ~1.7 ADC
 - Signal/Noise ~ 18

Δm_s Measurement

B_s Candidate Selection

- Select B_s candidate
 Example B_s →µD_sX
- Combine two oppositely-charged tracks into $\phi \rightarrow KK$
 - Add third track (π) to form D_s
- Form B_s candidate:
 - Semileptonic decay add lepton
 - B_s → D_sµvX, D_s → φ π - Golden mode at DØ
 B_s → D_sµvX, D_s → K*K
 B_s → D_sµvX, D_s → K_s K
 B_s → D_sevX, D_s → φ π
 B_s → D_sπX, D_s → φ π

$$B_s^0 \to D_s^- \mu^+ \nu X$$
$$D_s^- \to \varphi \pi^-$$
$$\varphi \to K^+ K^+$$

High track multiplicity per event

Final Signal Selection

Use likelihood ratio method

- Set of discriminating variables x_i constructed for each event
 - Helicity Angle (D_s,K₁)
 - $\mu(\pi)D_s$ Isolation
 - p_T(K₁K₂)
 - m(µD_s)
 - χ^2 of D_s Vertex Fit
 - m(K₁K₂ or K₁π)
- Construct likelihood ratio for each variable
 - bgrd from m(D_s) sidebands
 - signal from bgrd-sub peak

$$y_i = \frac{f_i^S(x_i)}{f_i^B(x_i)}$$

• Combine into single variable

• Use for final selection $Y = \prod_{i=1}^{n} y_{i}$

Samples

Hadronic samples

- Small BR, Low yield
- No dedicated trigger
- Good cτ resolution

• Semileptonic samples

- Large BR, high event yield
- Clean trigger
- Poorer cτ resolution, due to missing neutrino

Proper Decay Length (Partially Reconstructed Decays)

- Proper Decay Length is determined from the Visible Proper Decay Length
- K-factor takes into account the escaping neutrino and other missing particles
 - From MC for each decay mode

Proper Time Resolution

Initial State Flavor Tagging

- Get best estimate for reconstructed B meson to contain b(b) at origin
 - Find set of discriminating variables x₁,...,x_n
 - Combine different taggers using likelihood ratio method:

$$y = \prod_{i}^{n} y_{i} ; \quad y_{i} = \frac{PDF_{i}^{\overline{b}}(x_{i})}{PDF_{i}^{\overline{b}}(x_{i})}$$

d - combined discriminating variable

redefine d = (1-y)/(1+y) [-1,1]

Initial State Flavor Tagging

Definitions:

• Efficiency: $\varepsilon = \frac{N_{tagged}}{N_{total}}$

Dilution:
$$D = \frac{N_{nosc} - N_{osc}}{N_{nosc} + N_{osc}}$$

 Tagging power: ε · D²
 use to compare the performance of taggers

Opposite Side Tagging (OST)

PRD 74, 112002 (2006)

- Independent from the reconstructed B side (B_u, B_d, B_s)
 - Rely on fact that b produced as banti b pair
- Construct P.D.Fs using $B^{\pm} \rightarrow \mu^{\pm}\nu D^{0}X$ sample with VPDL = [0-0.050] μm
 - ~98% pure
 - Subtract background using wrong sign combination
- Measure dilutions in large $B^0_d \rightarrow \mu \nu D^* X$ and $B^{\pm} \rightarrow \mu \nu D^0 X$ samples

OST Tagger

Combined Tagger

- Combine OST and SST if both present
 - Assume both independent
- Combine SST and "Event charge" if both present
 - Σq_i of all tracks on opposite side

DØ Run II Preliminary

Tagger	ϵD^2
Comb. SST	$1.7\pm0.6\%$
Comb. OST without Evt. Charge	$2.5\pm0.2\%$
Evt. Charge	$1.5\pm0.5\%$
All	$4.5\pm0.9\%$

Amplitude Method

 $p_s^{nos/osc} \sim (1 \pm \mathcal{D} \cos(\Delta m_s \cdot Kx/c)) \longrightarrow p_s^{nos/osc} \sim (1 \pm \mathcal{D} \cos(\Delta m_s \cdot Kx/c) \cdot \mathcal{A})$

- If mixing signal with Δm_s , amplitude $\mathcal{A} = 1$ (statistically significant) otherwise $\mathcal{A} = 0$
- Scan Δm_s , for each value find $\mathcal{A} \pm \sigma_A$
 - Fit of proper decay length distribution for mixed and unmixed B_s using unbinned likelihood

∧m (ps)

∆m_s (ps⁻¹)

Layer 0 Impact

Results

- A parabolic fit to likelihood scan for Δm_s returns:
 - $\Delta m_s = 18.5 \pm 0.9 \text{ ps}^{-1}$
- 3.1σ statistical significance
- In agreement with CDF

 $\Delta m_s = 17.77 \pm 0.1 \text{ (stat.) } \pm 0.07 \text{ (syst.) } \text{ps}^{-1}$ PRL 97 242003

Other Parameters: $\Delta \Gamma_s$ and ϕ_s

- CP violation phase in SM is predicted to be very small: $2\beta_s = -\arg\left[\left(V_{tb}V_{ts}^*\right)^2 / \left(V_{cb}V_{cs}^*\right)^2\right] = 0.04 \pm 0.01$
- New Physics affects the CP violation phase:

B_s Lifetime Difference and ϕ_s

- Measure lifetime in $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$
 - Pseudoscalar \rightarrow Vector Vector
 - 3 angular momentum final states (L=0,1,2)
- The mass eigenstates are expected to be almost pure CP-eigenstates
 - S, D (CP even ~ B^L_s): linear combination of A₀, A₁₁
 - P (CP odd B^H_s): A₁
- Decay parameterized by three angles
 - Use "transversity basis"

 $\Delta \Gamma_{\rm s}$ and $\phi_{\rm s}$ in $B_{\rm s} \rightarrow J/\psi \phi$

 Simultaneous fit of mass, lifetimes, time-dependent angular distributions to extract ΔΓ_s and φ_s

$\Delta m_s, \Delta \Gamma_s$ and ϕ_s

PRD 76, 057101 (2007)

 Measured all three parameters that characterize B_s system at DØ

 $\Delta m_s = 18.5 \pm 0.9 \text{ ps}^{-1}$ $\Delta \Gamma_s = 0.13 \pm 0.09 \text{ ps}^{-1}$ $\phi_s = -0.70^{+0.47}_{-0.39}$ $a_{SL}^s = 0.0001 \pm 0.0090$

$\Delta m_s, \Delta \Gamma_s \text{ and } \phi_s$

Need more data!

Road to Discovery?

y

SUperSYmmetry

A symmetry between fermions and bosons

- R-parity = $(-1)^{3B+L+2S}$
- Solves fine-tuning of SM, lead to GUTs, possible dark matter candidate (LSP), may incorporate gravity

SM Particles	SUSY P	Particles	Particles
quarks: <i>q</i>	q	squarks: \tilde{q}	
leptons: <i>l</i>	l	sleptons: \tilde{l}	
gluons: g	g	gluino: \tilde{g}	
charged weak boson: W^\pm	W^{\pm}	Wino: \widetilde{W}^{\pm} \sim_{\pm}	
Higgo: H ⁰	H^{\pm}	charged higgsino: \widetilde{H}^{\pm} $\int \chi_{1,2}$ chargino	
11ggs. 11	$h^{\circ}, A^{\circ}, H^{\circ}$	neutral higgsino: $\tilde{h}^{\circ}, \tilde{A}^{\circ}, \qquad] \tilde{H}^{\circ}$ higgsino	
neutral weak boson: $Z^{ m 0}$	Z^{0}	Zino: \widetilde{Z}^{0} $\overleftarrow{\chi}_{1,2,3,4}^{0}$ neutralino	Supersymmetric
photon: γ	γ	photino: $\tilde{\gamma}$	"shadow" particles

SUSY breaking mechanism is unknown ⇒ many params. Θ
 mSUGRA: m₀, m_{1/2}, A₀, tan β, Sign(μ)

Search Strategies

- Concentrate on inclusive signatures for SUSY
 - Masses not known \Rightarrow different decay scenarios possible
 - Squark, gluino pairs
 - Stop : $\tilde{t} \rightarrow \tilde{\chi}^{+}b \rightarrow \tilde{\chi}^{0}{}_{1}W^{*}b$; $\tilde{t} \rightarrow c \tilde{\chi}^{0}{}_{1}$
 - Sbottom
 - Canonical SUSY signatures :
 - Jets (b,c) + Missing transverse energy
 - Lepton + jets (b,c) + Missing transverse energy

Inclusive MET + Jets

- One of the most sensitive channels
 - Squarks, gluinos interact strongly
- Low mass Supersymmetry
 - Large cross section at the LHC
- Difficult part is to convince yourself that there is a real excess!
 - MET dataset cleanup
 - Beam and instrumental backgrounds
 - Use control regions that enhance background over signal to calibrate <u>from data</u> W/Z+jets, top pairs, QCD dijets
- Understanding of systematic uncertainties
 - Jet energy scale uncertainty and MET resolution

D. Tsybychev

MET Calibration from Z+jets

- Measure Z+jets with $Z \rightarrow \mu\mu$, ee in data to normalize the $Z \rightarrow \nu\nu +$ jets (invisible) contribution and calibrate MET spectrum
- With ~1fb⁻¹ should have enough Z+jets events
- May use W+jets through the W/Z ratio and lepton universality

Heavy Flavor Tagging

Tagger Combination

- Combine all the information in the event
 - Add flavor identification?
- Continuous variable vs single operating point
- Include all jets
 - Event probability
 - Include in the signal selection discriminant

Summary

- Measured all three parameters that characterize B_s system at D0
 - No significant deviations from the SM are observed
 - All results are still statistics limited
- Looking forward to collecting more data
 - Expecting quick turn around as we collect data
 Mature analyses
- Very exciting time for high energy physics
 LHC will help shed light on physics beyond SM
- Proposed plan relies on group expertise and builds on its strength

Backup Slides

channel	yield
$B_{s} \rightarrow \mu^{+}D_{s}^{-}X, D_{s}^{-} \rightarrow \phi\pi^{-}, \phi \rightarrow K^{+}K^{-}$	44777
$B_s \rightarrow e^*D_s^-X, D_s^- \rightarrow \phi \pi^-, \phi \rightarrow K^*K^-$	1663
$B_{s} \rightarrow \pi^{+}D_{s}^{-}X, D_{s}^{-} \rightarrow \phi\pi^{-}, \phi \rightarrow K^{+}K^{-}$	249
$B_{s} \rightarrow \mu^{+}D_{s}^{-}X, D_{s}^{-} \rightarrow K^{*0}K^{-}, K^{*0} \rightarrow K^{+}\pi^{-}$	18098
TOTAL	64787

Systematics

- Vary each source separately within uncertainty
- Incorporate systematics as $\sigma^{sys}=\Delta A+(1-A)\Delta\sigma_A/\sigma_A$
- Consider following sources:
 - Dilution
 - K-factors
 - VPDL model
 - Mass fit model
 - Sample composition
 - Background description
- Systematic uncertainties are small compared to statistical

Same Side Tagging (SST)

DØ Run II Preliminary

- Depends on B-hadron species
 No direct transfer B⁺, B⁰ → B_s
- Predict SST dilution using MC
 No PID 🙁
- Use kinematic variables ΔR , p_T^{rel} ,
- To verify compare data and MC with known flavor for individual taggers and combination

• i.e. $B^+ \rightarrow J/\psi K^+$

Noise Elimination – Layer 0 implementation

Electronically create an isolated ground on the detector

- Dedicated adapter card
 - Use ground isolated power regulators near the detector
 - All signals sent differentially across the barrier
- CLC filter before regulators, for SVX4 power
- Isolated high voltage ground with 10K resistor
- Isolated ground needs reference to the outside world
 - This is provided by the high voltage ground resistor
- Mesh spacer to minimize capacitance between analog cables

- Carbon fiber cocured with flex circuit with copper trace to achieve better contact
- Ground pads at backplane of hybrid
- Wrap-around to connect sensor GND to support (as well as bias voltage to backplane)

Charge Asymmetry and ϕ_s

• Measurement of the charge asymmetry induced by B_s mixing

$$A_{SL}^{\mu\mu}(tag) = \frac{N(\mu^{+}\mu^{+}) - N(\mu^{-}\mu^{-})}{N(\mu^{+}\mu^{+}) + N(\mu^{-}\mu^{-})} = \frac{1}{4f} \left[A_{SL}^{d} + \frac{f_{s}\chi_{s0}}{f_{d}\chi_{d0}} A_{SL}^{s} \right] = 2A_{SL}(untagged)$$

 $A_{SL}(B_s) = 0.006 \pm 0.010$

Charge asymmetry in semileptonic $B_{s} \Delta \Gamma_{c} \tan \phi_{c} = 0.02 \pm 0.16 \text{ ps}^{-1}$

 $a_{SL}^{s} = 0.0001 \pm 0.0090$

$\Delta\Gamma_{\rm s}$ and $\phi_{\rm s}$, General Case

Muon Trigger

Single inclusive muons

- |η|<2.0, p_T > 3, 4, 5 GeV
- Muon + track match at Level 1
- No direct lifetime bias
- Prescaled or turned off depending on inst. lumi.
- Dimuons: other muon for flavor tagging
- e.g. at 50·10³⁰ cm⁻²s⁻¹
 - 20 Hz of unbiased single μ
 - 2 Hz of di-µ
 - No rate problem at L1/L2

