Searching for New Physics in Di-Tau Final States with ATLAS

Trevor Vickey

University of Wisconsin, Madison

December 2, 2008

University of Pennsylvania Experimental High-Energy Physics Seminar

A Beautiful Picture of Nature We have an extremely successful Standard Model (SM) of particle physics However a number of significant pieces are still missing...

Just to name a few:

Dark Matter

Dark Energy

Electroweak Symmetry Breaking

Quantum Gravity

Searches at High-Energy Colliders

Could find some answers by looking in di-tau final states

Many theories beyond the SM predict new physics here

Three Generations of Matter

The tau lepton is kind of a heavy cousin of the electron (third generation)

- Massive ~1.78 GeV/c²
- Measurable lifetime cτ ~87 μm
- Decays hadronically ~65% of the time

Decay modes	TAUOLA-CLEO
$ au ightarrow e u_e u_ au,$	17.8 %
$ au ightarrow \mu u_\mu u_ au$	17.4 %
$ au ightarrow h^{\pm}$ neutr. $v_{ au}$	49.5 %
$ au o \pi^\pm u_ au$	11.1 %
$ au ightarrow \pi^0 \pi^\pm u_ au$	25.4 %
$ au ightarrow \pi^0 \pi^0 \pi^\pm u_ au$	9.19 %
$ au ightarrow \pi^0 \pi^0 \pi^0 \pi^\pm u_ au$	1.08 %
$ au o K^{\pm}$ neutr. $v_{ au}$	1.56 %
$ au o h^{\pm} h^{\pm} h^{\pm} neutr. v_{\tau}$	14.57 %
$ au ightarrow \pi^{\pm}\pi^{\pm}\pi^{\pm} u_{ au}$	8.98 %
$ au ightarrow \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	4.30 %
$ au ightarrow \pi^0 \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	0.50 %
$ au ightarrow \pi^0 \pi^0 \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	0.11 %
$ au ightarrow K^0_S X^{\pm} u_{ au}$	0.90 %
$ au ightarrow (\pi^0) \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} \nu_{ au}$	0.10 %
other modes with K	1.30 %
others	0.03 %

Electroweak Symmetry Breaking

Higgs Mechanism believed to be responsible for electroweak symmetry breaking

- The Higgs boson has eluded experimentalists for decades
- A key objective for the CERN Large Hadron Collider

For low Higgs masses, tau lepton final states have an advantage over bb

Good discovery sensitivity in ~30 fb⁻¹ of 14 TeV LHC data

Supersymmetry?

Every particle has a "super-partner" particle

• Fermion \leftrightarrow Boson

Motivation for Supersymmetry

- Naturalness (Hierarchy Problem)
- Unification of the forces (gauge couplings)
- Provides a candidate for Dark Matter

Minimal Supersymmetric extension to the SM: a two Higgs doublet model (h, A, H, H[±])

- Coupling to the tau could be significantly enhanced over the SM
- Some Higgses could be quite massive ~500 GeV

Extra Dimensions? Grand Unification?

Some models predict an extra gauge boson, referred to as the Z'

Would appear as a high mass resonance

- Z' could couple equally to all generations (inclusiveness)
- Or preferentially to the third (exclusiveness)

The current limit on Z'→tau tau searches comes from the Tevatron

- From CDF > ~400 GeV/c² @ 95% CL
- Reference: D. Acosta et al., Phys. Rev. Lett. 94, 091803 (2005)

A massive graviton could be another source of di-tau resonances

The Large Hadron Collider (LHC)

One Primary Objective of the LHC

Elucidate the mechanism responsible for Electroweak Symmetry Breaking

- Particle accelerator located at CERN (Geneva, Switzerland)
- 26.7 km circumference
- pp collider at $\sqrt{s}=14~{\rm TeV}$
- Instantaneous luminosity of $\sim 10^{33} 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- 40 MHz bunch-crossings with a "pile-up" of 2-20 inelastic collisions per crossing
- First circulating beam September 10, 2008 / First collisions in 2009 (?)

The Large Hadron Collider

Housed in the former LEP tunnel

- Dipole field at 7 TeV is 8.33 T
- ~350 MJ per beam!
- Ultimately ~2800 bunches
- Vacuum 10⁻¹³ atm (~6500 m³ pumped)
- 1232 Dipoles (operate at 1.9 K)
- 858 Quadrupoles
- Typical store lasts ~10 hours
- Can also be used for ion running (Pb)
- Final price tag estimated at 4G EUR

LHC: Large Hadron Collider SPS: Super Proton Synchrotron AD: Antiproton Decelerator ISOLDE: Isotope Separator OnLine DEvice PSB: Proton Synchrotron Booster PS: Proton Synchrotron LINAC: LINear ACcelerator LEIR: Low Energy Ion Ring CNGS: Cern Neutrinos to Gran Sasso

September 10, 2008

First circulating beam!

- 450 GeV Beam 1 (clockwise) ~10:30
- 450 GeV Beam 2 (counter-clockwise) ~15:00

September 19, 2008

Electrical fault during powering tests of the main dipole circuit in Sector 3-4

- Resulted in magnet displacements and damage to super-insulating blankets
- Afterwards, it became quite clear that collisions during 2008 would not occur

Dipole bus-bar

A Toroidal LHC ApparatuS (ATLAS)

- Collaboration formed in 1992
- As of April 2007: 37 Countries, 167 Institutions, ~2000 Members
- The largest collider detector ever built

General purpose experiment at the LHC

- Not just poised for finding and studying Higgs: Top, Exotics, SUSY, etc.
- Length ~40 m, Radius ~10 m, Weight ~7k tons, Channels ~10⁸

The Inner Tracker

- Comprised of the silicon Pixel Detector (50 x 400 μm), Semiconductor Tracker (silicon strips 80 μm pitch), Transition Radiation Tracker (straw tracker)
- Resides inside of the central solenoid (magnetic field of 2 Tesla)

$$rac{\delta p_T}{p_T} \simeq 5 imes 10^{-4} \oplus 0.01$$

Electromagnetic Calorimeter

Pb and liquid Ar

$$\frac{\delta E}{E} = \frac{0.1}{\sqrt{E}}$$

Hadronic Calorimeter

Fe + scintillator and Cu + liquid Ar

$$rac{\delta E}{E} = rac{0.5}{\sqrt{E}} \oplus 0.03 \, \left|\eta
ight| < 3$$

$$\frac{\delta E}{E} = \frac{1}{\sqrt{E}} \oplus 0.07 \ |\eta| \ge 3$$

Muons

- Monitored Drift-Tube chambers
- Cathode Strip Chambers
- Resistive Plate Chambers
- Thin Gap Chambers

$$\frac{\delta p_T}{p_T} \simeq 0.1$$
 at 1 TeV

Trigger and Data Acquisition System:

• Level-1 is hardware, Level-2 confined to "Regions of Interest", Event Filter has the ability to access the entire event

September 10, 2008

First beam event in ATLAS!

After September 19, 2008

ATLAS continues taking valuable cosmics data...

- We get a constant delivery of cosmic rays for free
- Typical trigger rate is 1 200 Hz
- Useful for alignment studies
- Debug DAQ
- Exercise data-taking chain...

Strategy and Start-up

The LHC has ushered in a new era...

- Collisions in 2009 (?)
- Few ~100 pb⁻¹ by the year's end?
- Both ATLAS and CMS have already recorded beam data!

Understand the detectors...

- Diagnose hot or dead channels
- Tally up dead material
- Tracking detector alignment
- Tune the detector simulations to better match ATLAS and CMS

...do Standard Model measurements

- Examine our standard candles
- Demonstrate the ability to measure Ws, Zs and top quarks (b-jet identification)

...then search for the Higgs and New Physics

LHC The first five years?

2009	~100 pb ⁻¹	10 ³¹ cm ⁻² s ⁻¹
2010	~1 fb ⁻¹	10 ³² cm ⁻² s ⁻¹
2011	~10 fb ⁻¹	2 x 10 ³³ cm ⁻² s ⁻¹
2012	~30 fb ⁻¹	2 x 10 ³³ cm ⁻² s ⁻¹
2013	~100 fb ⁻¹	2 x 10 ³⁴ cm ⁻² s ⁻¹

1 pb⁻¹ = 3 days at 10³¹ cm⁻² s⁻¹

ATLAS Z' Studies

Three Final States Considered

Considered four signal mass points (all three di-tau final states: II, Ih, hh)

- 600, 800, 1000 and 2000 GeV •
- Used cross-sections from the Sequential Standard Model ("SSM")
- Backgrounds considered: Drell-Yan, QCD di-jets, W+jets, Z+jets, ttbar

Event Selection (Ih final-state)

(a) Trigger

- Trig_EF_e25i || Trig_EF_e60 || Trig_EF_mu20i
- Hadronic tau trigger not yet explored (could be used in combination with MET trigger)

(b) Lepton Selection

- Good electrons and muons as selected by the offline software
- Must have at least one electron or muon for the lh channel
- |eta| < 2.5; pT > 27 (e); pT > 22 (mu)

(c) Hadronic Tau

- Good hadronic taus has selected by the offline software
- Require number of tracks to be 1 || 3
- Tau pT > 60
- Cut on a likelihood variable (derived from a handful of discriminants) as a function of the tau transverse energy (enhances QCD rejection)

Hadronic Tau ID in ATLAS

Hadronic tau identification at a hadron collider is a difficult task

- Complicated by the need to distinguish from QCD multi-jets
- Tau jets have lower track multiplicities contained in a narrow cone
- Characteristics of the track system and the calorimetric showers also help to distinguish against QCD jets (fakes)

Two algorithms in ATLAS: calorimetry-based and track-based:

- Calorimetry-based: Exploit collimated energy deposition, isolation region, EM Radius and Fraction
- Track-based: Exploit track multiplicity, isolation region, impact parameter, invariant mass
 Decay modes
 TAUOLA-C

In this study the calorimetry-based algorithm was used

Decay modes	TAUOLA-CLEO
$ au ightarrow e v_e \; v_ au,$	17.8 %
$ au ightarrow \mu u_{\mu} u_{ au}$	17.4 %
$\tau \rightarrow h^{\pm} neutr. v_{\tau}$	49.5 %
$ au ightarrow \pi^{\pm} u_{ au}$	11.1 %
$ au ightarrow \pi^0 \pi^\pm u_ au$	25.4 %
$ au ightarrow \pi^0 \pi^0 \pi^\pm u_ au$	9.19 %
$ au ightarrow \pi^0 \pi^0 \pi^0 \pi^\pm u_ au$	1.08 %
$ au o K^{\pm}$ neutr. $v_{ au}$	1.56 %
$\tau \rightarrow h^{\pm}h^{\pm}h^{\pm}neutr.v_{\tau}$	14.57 %
$ au ightarrow \pi^{\pm}\pi^{\pm}\pi^{\pm} u_{ au}$	8.98 %
$ au ightarrow \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	4.30 %
$ au ightarrow \pi^0 \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	0.50 %
$ au ightarrow \pi^0 \pi^0 \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	0.11 %
$ au ightarrow K^0_S X^{\pm} u_{ au}$	0.90 %
$ au ightarrow (\pi^0) \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} \nu_{ au}$	0.10 %
other modes with K	1.30 %
others	0.03 %

Hadronic Tau ID in ATLAS

A one-dimensional likelihood ratio is built from multiple discriminating variables

• Includes discrete variables like number of tracks or tau charge, as well as continuous variables such as the radius of the cluster in the EM calorimeter

We cut on the value of the log of this likelihood ratio (LLH) as a function of E_{T}

• A fixed cut would not be optimal for jet rejection, nor flat as a function of energy

Event Selection (Ih final-state)

lep

τ

(d) Opposite Charge

 Require that the product of the tau and lepton charges be <= 0

(e) Missing Transverse Energy

• Require MET > 30

(f) Transverse Mass

- Build the transverse mass using the lepton and MET
- Require MT < 20

(g) Total Event pT (vector sum)

• Require pT TOT < 50

(h) Visible Mass

- Build the visible mass using the lepton, tau and MET four-vector (Pz = 0)
- Use cuts on Mvis like a mass window, but only with a lower bound

(i) Mass Reconstruction (collinear approximation)

- Check that the two taus are not back-to-back in the lab frame
- Cut on the fractions of the visible tau momentum carried by the decay daughters

had

missing E_T

Results for the lh final-state

Analysis for the lh final-state

Includes all four Z' signal masses

- Assume 14 TeV running
- ATLAS full detector simulation

	Z' Signal σ [fb]				Background σ [fb]			
Cut	m = 600 GeV	$m=800~{\rm GeV}$	m = 1000 GeV	m = 2000 GeV	$t\overline{t}$	W+ jets	Z+ jets	QCD
Trigger	1356.0	516.8	223.6	11.6	213494.2	12358210.0	2062080.5	3369127.5
Lepton	905.1	336.2	139.8	6.6	151010.4	9028033.0	1062146.4	121617.1
Tau	367.6	153.2	67.0	3.6	7808.2	74818.4	39573.5	3354.1
Charge	314.8	132.1	58.4	3.1	2487.0	3502.8	23097.7	831.4
MET > 30	269.7	115.7	53.4	2.9	2034.6	2343.8^{\dagger}	707.7	181.8^{\dagger}
$M_{TR} < 20$	186.7	77.9	35.0	1.7	164.5	182.6^\dagger	245.4	86.4^{\dagger}
$P_T \text{ TOT} < 50$	165.2	68.0	30.5	1.4	44.6	149.7^{\dagger}	175.7	16.2^{\dagger}
$M_{vis} > 300$	144.7	_	_	_	17.1	44.5^{\dagger}	18.8	8.9^{\dagger}
M_{col}	23.5	_	_	_	5.7	5.8^{\dagger}	5.0	1.5^{\dagger}
$M_{vis} > 400$	_	59.1	_	_	6.9	20.1^{\dagger}	5.0	3.1^{\dagger}
M_{col}	_	7.8	—	—	2.3	0.0^{+}	0.4^{\dagger}	0.0^{\dagger}
$M_{vis} > 500$	_	_	25.4	_	3.4	11.7^{\dagger}	1.3	0.1^{\dagger}
M_{col}	_	_	2.4	_	0.1^{\dagger}	0.0^{+}	0.0^{\dagger}	0.0^{\dagger}
$M_{vis} > 700$	_	_	_	1.2	2.3	2.8^{\dagger}	0.4^{\dagger}	0.0^{\dagger}

ATLAS Preliminary All cross-sections here are given in fb

Plots for the lh final-state

Both the Visible and the Collinear masses are shown

- Plotted for an 800 GeV Z'
- Assuming 1 fb⁻¹ of data at 14 TeV

Results for the hh final-state

Analysis for the hh final-state

Large similarities with the lh selection, but:

- Use hadronic tau trigger in combination with MET (Preliminary)
- Increase the minimum MET requirement to 40 GeV
- Different MT and pT TOT cuts than the lh channel; < 35 and < 50, respectively

Turns out to be our most powerful final-state

- Note that the primary trigger for this channel is the hadronic tau trigger
- Studies are currently underway to further explore the trigger for this channel

	Z' Signal σ [fb]				Background σ [fb]			
Cut	m = 600 GeV	$m=800~{\rm GeV}$	$m=1000~{\rm GeV}$	$m=2000~{\rm GeV}$	$t\overline{t}$	W+ jets	Z+ jets	QCD
Trigger	1475.3	567.8	245.9	12.2	70531.8	1668621.5	404922.8	1833543.8
2 Taus	204.0	102.2	47.8	3.1	211.3	250.7	710.0	831.5
Charge	197.1	98.5	46.1	2.9	195.3	183.4	649.9	829.1
MET > 40	168.1	86.2	40.8	2.7	177.1	128.6^{\dagger}	73.2	79.9^{+}
$M_{TR} < 35$	146.5	72.6	34.7	2.1	42.3	29.0^{\dagger}	49.4	38.8^{\dagger}
$P_T \text{ TOT} < 50$	129.9	65.0	30.3	1.7	12.6	21.2^{\dagger}	40.3	27.6^{+}
$M_{vis} > 400$	116.6	_	_	—	1.1	9.7^{\dagger}	13.8	16.8^{\dagger}
M_{col}	18.6	_	_	_	0.4^{\dagger}	0.0^{+}	0.8	1.8^{\dagger}
$M_{vis} > 500$		55.9	_	_	1.1	4.6^{\dagger}	10.8	6.1^{\dagger}
M_{col}	_	6.8	—	—	0.1^{\dagger}	0.0^{+}	0.8	0.0^{+}
$M_{vis} > 600$		_	24.6	—	0.7^{\dagger}	3.0^{\dagger}	3.0	4.3^{\dagger}
M_{col}	_	_	2.5	_	0.02^{\dagger}	0.00^{+}	0.04^{\dagger}	0.00^{+}
$M_{vis} > 800$	_	_	_	1.6	0.2^{\dagger}	0.5^{\dagger}	0.8	0.3^{\dagger}

ATLAS Preliminary All cross-sections here are given in fb

Plots for the hh final-state

Both the Visible and the Collinear masses are shown

- Plotted for an 800 GeV Z'
- Assuming 1 fb⁻¹ of data

Excellent Mass Resolution

Results for the II final-state

Analysis for the II final-state

Large similarities with the lh selection, but:

- Obviously no hadronic tau selection
- **MET requirement at 40 GeV** ٠

ATLAS

- MT and pT TOT cuts are < 35 and < 50, respectively ٠
- Added a b-tag veto (displaced vertex) to help with background rejection •

	Z' Signal σ [fb]					Background σ [fb]			
Cut	$m = 600 { m ~GeV}$	$m=800~{\rm GeV}$	$m=1000~{\rm GeV}$	$m=2000~{\rm GeV}$	$t\overline{t}$	W+ jets	Z+ jets		
Trigger	1355.9	516.8	223.7	11.6	213494.2	12365976.0	2050989.6		
2 Leptons	132.3	55.2	25.7	1.1	13861.8	2250.3	640457.2		
Charge	131.0	54.8	25.3	1.1	13219.4	1591.0	638777.9		
MET > 40	92.2	41.9	20.7	1.0	9964.5	641.9^{\dagger}	1205.9		
$M_{TR} < 35$	69.3	31.9	16.0	0.7	1602.6	82.5^{\dagger}	331.9		
$P_T \text{ TOT} < 70$	52.2	24.5	12.3	0.5	551.6	52.7^{\dagger}	192.7		
b Veto	52.0	24.2	12.0	0.5	130.1	52.0^{\dagger}	162.0		
$M_{vis} > 300$	38.6	_	_	_	29.7	5.0^{\dagger}	18.4		
M_{col}	2.5	—	—	—	0.9	1.8^{\dagger}	1.5		
$M_{vis} > 400$	_	14.9	—	—	8.7	1.8^{\dagger}	7.7		
M_{col}	_	0.6	_	_	1.3^{\dagger}	0.9^{\dagger}	0.0^{\dagger}		
$M_{vis} > 500$	_	_	6.8	_	2.6	0.9^{\dagger}	4.6		
M_{col}	_	_	0.2	—	0.4^{\dagger}	0.0^{\dagger}	0.0^{\dagger}		
$M_{vis} > 700$		—	_	0.3	1.7^\dagger	0.0^{\dagger}	4.6		

All cross-sections here are given in fb Preliminary

Results for combination

Combination of all final-states

At the level of the Visible Mass cut

• With and without inclusion of the systematics (assume 20%) estimates

Combination of all final-states

At the level of the Collinear Mass cut

• With and without inclusion of the systematics (assume 20%) estimates

What if it is not the SSM?

For Evidence or Discovery

Left: Assuming the SSM cross-section, luminosity for evidence or discovery Right: Minimum CS needed for evidence or discovery in 1 fb⁻¹ of data

Conclusions

First LHC Collisions expected ~late Summer of 2009

The ATLAS and CMS Experiments are ready for collision data-taking

- Both experiments have already taken extensive amounts of cosmics data
- This data has already helped to gain understanding about the detectors
- Calibration of the subsytems and refinement of the software continues

At the right mass and cross-section, a Z' discovery could come very early

- ~1 fb⁻¹ at 14 TeV
- Analysis is easily extended into a massive graviton or MSSM Higgs Search

Use tau polarization to determine the spin of any observed resonance

Can distinguish between left and right-handed taus on a statistical basis

Backup Slides

The ATLAS Experiment Designed to search for the Higgs and New Physics over a wide mass range

Hermetic calorimetry

Exceptional measurement of missing transverse energy, jets to high eta

Exceptional particle identification

- Muons Efficiency ~90% Jet Rejection ~10⁵
- Jet Rejection ~10⁵ Electrons Efficiency ~80%
- Photons Efficiency ~80% Jet Rejection ~10³
- Light Jet Rejection ~10² • b-Jet ID Efficiency ~60%
- Tau ID Efficiency ~50% Jet Rejection ~10²

Electron, muon and photon energy and momentum resolution of ~2-3%

ATLAS Data-taking Chain

First test of the end-to-end data-taking chain took place in September 2007

Supersymmetric Higgs(es)

Motivation for SUSY

60

 α_1^{-1}

Motivation for Supersymmetry

- Naturalness (Hierarchy Problem)
- Unification of the forces (gauge couplings)
- Provides a candidate for Dark Matter

SM

MSSM Higgs at the LHC

Minimal Supersymmetric extension to the SM: (A, H, h, H[±])

- As one example here, consider A / H ${\rightarrow}\mu\mu$
- Not visible in the SM
- Enhanced in the MSSM by ~tan² β ; excellent mass resolution as opposed to $\tau\tau$

MSSM Higgses with ATLAS

The complete region of the m_{A} – tanß parameter space should be accessible to ATLAS

- mA = 50 500 GeV
- $Tan\beta = 1 50$

ILC Specific

Is it really the Higgs?

Properties that we will want to measure to confirm a Higgs discovery:

- What is the mass and width?
- Does it have charge?
- What are the production processes and crosssections?
- What are the branching-ratios?
- What are the couplings?
- What is its spin?

Reasonably good precision from the LHC ~10-20% level Get precise measurements from a high-energy e+e- collider ~1% level

The advantages of an e+e- collider:

- They're elementary particles
- Able to collide them with well defined energy and angular momentum
- Collisions at the full center-of-mass energy
- "Democratic" particle production
- Possible to fully reconstruct the events

The International Linear Collider (ILC)

Already a huge international effort of R&D on this accelerator

Global design effort well underway

Parameters for the ILC (derived from the scientific goals)

- Center-of-mass energy adjustable from 200 500 GeV (extendible to 1 TeV)
- Total integrated luminosity of 500 fb⁻¹ in 4 years
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%

Cost: ~6.6 Billion USD Location: One of three possible sites

Locations in the Americas, Europe and Asia: Fermilab, CERN and Japan

Timescale: Commissioning sometime beyond 2020?

Higgs Specific

The Origin of Mass

The SM says that all of the carriers of the Electromagnetic and Weak forces must have the same "symmetric" mass, of zero

- These force carriers are the γ and W^{\pm}/Z , respectively
- We know from experiment that the Weak force carriers have a non-zero mass

The Origin of Mass

What breaks the symmetry of the Weak Interactions?

- In the theory, postulate a Higgs Field ϕ and a potential energy function:

$$V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$$

- Assume minimum is not at $\phi=0$ but, some non-zero value: ϕ_0

Analogy to a ball rolling down a hill

 Direction that the ball rolled down has now been singled out from all other directions; the symmetry has been spontaneously broken

Through the Higgs Mechanism, particles obtain an "effective mass"

The Higgs Field

The Higgs Field is a scalar field (think of a temperature map)

• Particles obtain an "effective mass" by interacting with the Higgs field of empty space

Energy in GeV

10-12

10-9

10-6

10-3

ime in s

1018

1012

106

1

From Theory... the exact Higgs mass is unknown

 If SM is valid up to the Plank Scale ~10¹⁹ GeV then M_H is in a limited range:

$$130~{
m GeV/c}^2 \lesssim M_H \lesssim 180~{
m GeV/c}^2$$

If there is new physics ~10³ GeV:

$$50~{
m GeV/c}^2 \lesssim M_H \lesssim 800~{
m GeV/c}^2$$

SM Higgs Sector no longer meaningful for this Λ

What we know about the Higgs

From Experiments of the past...

Higgs searches at the Large Electron-Positron Collider (LEP) at CERN

- Collider ran from 1989 through 2000
- In 2000, center-of-mass energy was 200 210 GeV
- Four detectors: ALEPH, DELPHI, L3 and OPAL

Present Limit from direct searches at LEP:

$$M_H > 114.4 \text{ GeV/c}^2, \text{CL} = 95\%$$

What we know about the Higgs

From Experiments of the present...

Very aggressive searches at the CDF and D-Zero Experiments

- Proton anti-proton collider near Chicago, USA
- Running with a center-of-mass energy of 1.96 TeV
- Now looking into roughly 3 fb⁻¹ of data, but no sign of the Higgs yet
- Running through 2010 is on the table; could provide a total of 8 10 fb⁻¹

Tevatron Run II Preliminary

What we know about the Higgs ICHEP 2008 combined result from CDF and D-Zero [155, 200 GeV]

• Exclude 170 GeV/c² @ 95% CL

Tevatron Run II Preliminary, L=3 fb⁻¹

60

What we know about the Higgs

From other experimental measurements...

Precision Electroweak measurements are indirectly sensitive to the Higgs mass through radiative corrections Н

Ŵ/Z

What we know about the Higgs

All experimental data to date favors a light Higgs

- SM: M_H = 87⁺³⁶-27 GeV; M_H < 160 GeV @ 95% CL
- LEP Direct Limit: M_H > 114.4 GeV @ 95% CL

Higgs production at the LHC

SM Higgs discovery final states

At low mass $(M_H < 2M_Z)$

- Dominant decay through bb; enormous QCD background, suppressed in ttH
- $H \rightarrow \tau \tau$ accessible through Vector Boson Fusion (VBF)
- $H \rightarrow WW^{(*)}$ accessible through gluon-gluon fusion and VBF
- $H \rightarrow \gamma \gamma$ has a low BR (decays through top and W loops); but due to excellent γ /jet separation and γ resolution is still very significant
- $H \rightarrow ZZ^* \rightarrow 4I$ also accessible

For higher masses

H→WW and H→ZZ→4I final-states

$\mathsf{VBF}\:\mathsf{H}\to\tau\tau$

A very significant channel for low masses

- Important for studying the coupling of Higgs to leptons
- Three final states lepton-lepton, lepton-hadron, hadron-hadron
- Triggers for the fully hadronic mode are under investigation

Mass reconstruction via the collinear approximation

- Approximation breaks down when the two taus are back-to-back
- Mass resolution limited by missing transverse energy (~8 10 GeV)

Experimental issues:

- Tau tagging (Likelihood, Neural Net methods)
- Z+jets background (especially for low masses)
- tt rejection (b-jet ID and veto for lepton-lepton)

$\mathsf{VBF}\:\mathsf{H}\to\tau\tau$

Data-driven control samples are being explored for many backgrounds

- The relative contributions from different jet multiplicities are not known
- Unknowns related to critical analysis cut-specific variables exist

evts / 5 GeV

SM Higgs Discovery Potential

Luminosity for SM Higgs discovery or exclusion

- ~few 100 pb⁻¹, some exclusion @ 95% CL
- + ~1 fb⁻¹, 5\sigma discovery if $M_{\rm H}$ ~160 170 GeV
- ~10 fb⁻¹, discovery over a broad mass range

Tau Specific

Hadronic Tau Selection

Zofia has already given a number of talks on high-pT tau selection: http://indico.cern.ch/getFile.py/access?contribId=1&resId=1&materialId=slides&confId=18959

http://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=17392

Her studies have sculpted the hadronic tau selection criteria for Z'

e.g., cut on the tau likelihood as a function of the tau ET (see next few slides)

Tau ID in ATLAS

- **two algorithms: c**alorimetry-based (*tauRec*) and track-based (*tau1p3p*)
- **Calorimetry:** collimated energy deposition, π^0 s produced, isolation region, EM radius, EM fraction
- **Tracking:** low track multiplicity, isolation region, positive impact parameter, invariant mass and width of track system (3-prong)
- Highlights from Data Preparation Perspective:
 - τ -specific calibrations need to be understood
 - tracking objects associated with calo objects: good sensitivity to detector performance

Tau ID in ATLAS

Tau Efficiency

faking tau	estimated FR
electrons	~2%
muons	~0.5%
jets	~0.1%

FR depends on event activity and tau ID requirements, so this table just gives a <u>rough order of</u> <u>magnitude estimate</u>

Efficiency of reconstruction and rec/id with *tauRec* as a function of (a) Pt and (b) η in Z sample.

Tau Identification and QCD rejection (2)

To Identify taus:

•Overlap removal: remove muons and tight electrons

if within R=0.2

- •Require $N_{trk} == 1,3$ and charge=1
- Cut on IIh variable as a function of E_{τ} :

llh>6 (E_{T} <100); llh>4 (100< E_{T} <150); llh>2 (150< E_{T} <250); llh>0 (E_{T} >250)

• Tau Pt>60 GeV

Cut	Efficiency %
Е _т >60 GeV	89.1 %
+N _{trk} + charge =1	65.5 %
+ IIh cut	46.6 %

Tau energy resolution

Resolution extracted from gaussian fit in 2 sigma to E^{calib}/E^{vis,true}

Overall calibrated taus: H1 style calibrated taus: Resolution: 6.78 %; Resolution: 6.36 %; Relative resolution (mean/sigma)= 6.56% Relative resolution (mean/sigma)= 6.78% H1 style calibration Overall calibration Entries 11408 Entries 11408 외 비200 Mean 1.04 Mean 0.9453 RMS 0.09447 RMS 0.09358 Underflow 0 Underflow 0 Overflow 68 Overflow 51 Integral 1000 1.134e+04Integral 1.136e+04 1000 χ^2 / ndf 133.7 / 18 γ^2 / ndf 140.5 / 18 1143 ± 14.8 Constant Constant 1227 ± 15.8 800 800 Mean 1.033 ± 0.001 Mean 0.9384 ± 0.0006 Sigma 0.0678 ± 0.0006 Sigma 0.06367 ± 0.00056 600 600 400 400 200 200 8.2 0.4 0.6 0.8 1.2 1.4 1.8 0.2 0.6 0.8 1.2 1.6 0 4 1 1.4 1.6 1.8 E_T^{calib}/E_T^{true} E_T^{calib}/E_T^{true}

Trigger for II and Ih channels

Non optimal, looking forward to samples with Release 13 to study tau+e and tau+ μ menu items

• Electron trigger: e25i || e60

- ✤ Used for eh, ee, and eµ final states
- At high P_T e25i non optimal due to isolation-> use combination of e25i || e60
- Muon trigger : mu20
- → Used for μ h, $\mu\mu$, μ e final states

Trigger menu	e25i	e60	e25i e60	mu20
		$er_{\rm b}$		$\mu \tau_h$
Efficiency wrt to truth	70.5%	73.4%	77.1%	75.5%
Efficiency wrt offline	85.8%	92.1%	93.4%	80.6 %
		ee		μμ
Efficiency wrt to truth	83.5%	78.9%	87.3%	87.6%
Efficiency wrt offline	91.8%	94.2%	95.5%	90.3%
		$e\mu$		еµ
Efficiency wrt to truth	67.4%	70.1%	73.0%	73.7%
Efficiency wrt offline	84.5%	91.2%	92.4%	79.6%

Trigger for hh channel

Non optimal, looking forward to samples with Release 13 to study tau60, tau100

77

- Use tau35i+XE40 to trigger events with hh final state.
- Total rate of such item is 4Hz, predicted unprescaled at 10³² lumi.
 - See Marc-Andre Dufour's talk on Trigger Open meeting (Menus), the 17 of Jan

http://indico.cern.ch/getFile.py/access?contribId=1&resId=0&materiaIId=slides&confId=24859

Trigger studies performed using trigger decision after EF, efficiency shown wrt to highet Pt hadronic tau.

Tau Polarization

We can distinguish between left- and righthanded taus on a statistical basis

Plots of the fractional energy distributions are taken from:

FIG. 1. The fractional energy distributions of particle $A^$ arising from (a) left-handed and (b) right-handed τ^- decays, i.e., $\tau^- \rightarrow A^- + \text{missing energy where } z = E_A/E_{\tau}$, and where it is assumed that $E_{\tau} \gg m_{\tau}$. The *T*,*L* subscripts refer to transversely, longitudinally polarized vector mesons. The effects of the finite widths of the ρ and a_1 are included. Distributions (a) and (b) characterize W^- and H^- decays, respectively.

B.K. Bullock, K. Hagiwara and A.D. Martin, Phys. Rev. Lett. 67, 3055 (1991)

Z' Specific

Systematics

"Official" CSC systematic sources were considered:

			Z'	Mass	
Source	Relative uncertainty	$600~{\rm GeV}$	$800~{\rm GeV}$	$1000~{\rm GeV}$	$2000 { m GeV}$
Electron Energy Scale	$\pm 0.5\%$	0.4	0.4	0.3	0.1~%
Electron Energy Resolution	$\sigma(E_T)\oplus 0.012E_T$	0.3	0.2	0.2	0.2~%
Electron ID Efficiency	$\pm 1\%$	0.4	0.4	0.4	0.3~%
Muon Energy Scale	$\pm 1\%$	0.2	0.2	0.1	0.1~%
Muon Energy Resolution	$\sigma(p_T) \oplus 0.011 p_T \oplus 1.710^{-4} p_T^2$	0.4	0.2	0.1	0.0~%
Muon ID Efficiency	$\pm 5\%$	1.8	1.8	1.8	1.6~%
Tau Energy Scale	$\pm 5\%$	10.1	6.0	5.0	3.0~%
Tau Energy Resolution	$\sigma(E)\oplus 0.45\sqrt{E}$	0.8	0.2	0.1	0.1~%
Tau ID Efficiency	$\pm 5\%$	6.4	6.5	6.5	7.0~%
Jet Energy Scale	$\pm 7\%$	1.2	1.0	1.1	1.2~%
Jet Energy Resolution	$\sigma(E)\oplus 0.45\sqrt{E}$	0.3	0.4	0.5	0.3~%
Total		12.2	9.1	8.5	7.8~%

Large systematics for backgrounds due to poor MC statistics

• Assume systematics on background will be the same as the signal (~20%)

Mass Reconstruction

Full di-tau mass reconstruction is possible

- Use the collinear approximation when the parent particle is heavily boosted
- Approximation breaks down when the decay daughters are back-to-back
 - A heavy Z' is more or less generated at rest in the lab-frame
 - Two taus are most often quite nearly back-to-back
 - Could consider cutting on high , but high helps to reject background
- A large statistics sample will be important for any asymmetry measurement $\Delta \phi_{lh}$

$$p_{T,\tau 1} + p_{T,\tau 2} = \frac{p_{T,1}}{x_1} + \frac{p_{T,2}}{x_2}$$
$$= p_{T,1} + p_{T,2} + p_{T,\text{miss}}$$

$$m_{\tau\tau}^2 = (p_{\tau 1} + p_{\tau 2})^2 = \frac{2p_1 \cdot p_2}{x_1 x_2} + 2m_{\tau}^2$$
$$\approx \frac{2p_1 \cdot p_2}{x_1 x_2}$$

Event pT Total

Another cut that we use is the total pT of the event

• Use the hadronic tau, lepton, MET and leading-jet

The ATLAS Experiment

The CMS Experiment

Expected Event Rates

ATLAS with LHC at $\ \mathcal{L} = 10^{33} \ \mathrm{cm}^{-2} \ \mathrm{s}^{-1}$

Process	Events / s	Events in 10 fb ⁻¹
W→ev	15	10 ⁸
Z→ee	1.5	10 ⁷
ttbar	1	10 ⁶
bbbar	10 ⁶	10 ¹² -10 ¹³
H (m=130)	0.02	10 ⁵

Many of these processes become backgrounds to New Physics searches... ...more on this later

An Unexpected Event?

The media likes to get carried away... Will a Black Hole swallow the Earth? I think we're safe...

MSSM Higgs at the LHC

Summary of CMS reach in M_A tan β

87

CMSSM

Constrained MSSM

- O. Buchmueller et al., <u>arXiv:0707.3447v2</u> [hep-ph]
- CMSSM: M_h = 110 (+8)(-10) ± 3 (theo.) GeV
- Includes CDM, flavor physics and a_µ experimental data

CMSSM parameter	Preferred value
M_0	$(85^{+40}_{-25}) \text{ GeV}/c^2$
$M_{1/2}$	$(280^{+140}_{-30}) \text{ GeV}/c^2$
A_0	$(-360^{+300}_{-140}) \text{ GeV}/c^2$
$\tan\beta$	10^{+9}_{-4}
$\operatorname{sgn}(\mu)$	+1 (fixed)

Values of the CMSSM parameters at the globally preferred χ^2 minimum, and corresponding 1sigma errors. The lower limit of Eq. 2 is included.

Figure 2. Mass spectrum of super-symmetric particles at the globally preferred χ^2 minimum. Particles with mass difference smaller than 5 GeV/ c^2 have been grouped together.

Impact Parameter

Displaced vertices present in Zb<u>b</u> and t<u>t</u>

Impact Parameter Significance $\equiv d_0/\sigma_{d0}$

Transverse impact parameter resolution ~15 µm for P_T = 20 GeV Transverse primary vertex spread ~15 µm, taken into account

Isolation + Impact Parameter Criteria

O(10²) Rejection for Zb<u>b</u> O(10³) Rejection for t<u>t</u> for signal efficiency O(80%) Effect of pile-up on signal significance ≤5%

Higgs Properties

Higgs Properties: CP

Azimutal angle ϕ between decay planes in the rest frame of Higgs $F(\phi) = 1 + \alpha \cos(\phi) + \beta \cos(2\phi)$

Polar angle θ between lepton and the Z momentum in Z rest frame $G(\theta) = L \sin^2(\theta) + T(1 + \cos^2(\theta)), R = (L-T)/(L+T)$

$$\begin{split} \mathsf{M}_{Z^{\star}} \text{ distribution for } \mathsf{M}_{\mathsf{H}} < 2 \ \mathsf{M}_{Z}, \ \mathsf{d}\Gamma_{\mathsf{H}}/\mathsf{d}\mathsf{M}_{Z^{\star}}^2 &\sim \beta^{\mathsf{n}} \text{ near threshold (n=1 in SM)} \\ \beta^2 &= [1 - (\mathsf{M}_{Z} + \mathsf{M}_{Z^{\star}})^2 / \mathsf{M}_{\mathsf{H}}^2] [1 - (\mathsf{M}_{Z} - \mathsf{M}_{Z^{\star}})^2 / \mathsf{M}_{\mathsf{H}}^2] \end{split}$$

Resent ATLAS fast simulation study on sensitivity to $F(\phi)$ and $G(\theta)$ for exclusion of 0^- , 1^+ , 1^- for $M_H > 2M_Z$: SN-ATLAS-2003-025