

Search for WZ→lvbb at CDF q W* h Justin Keung University of Pennsylvania November 24th, 2009 Experimental HEP Seminar @ University of Pennsylvania

- Why WZ→lvbb?
 - Higgs search effort
 - Fermilab, Tevatron and CDF
- Improvements in b-jet identification
 - Importance in the WZ/WH \rightarrow lvbb search
 - Measurement of per-jet efficiency and background rate in data
- Search for the WZ
 - Background composition
 - Sensitivity estimates
 - Neural Network

Nov 24, HEP Seminar@UPenn

Searching for Higgs @Tevatron

Page 4 Of 34

Higgs Production @Tevatron

- Direct production gg→H→bb swamped by huge (~10⁷x) background QCD bb
- Associated production WH→lvbb reduces QCD background rate
 - Leptonic decay (into either electron or muon) gives a distinct signature for efficient triggering
 - Most sensitive process for low mass
 Higgs searches
- Z resonant production is similar to H resonant production

WZ→lvbb Search

- WZ \rightarrow lvbb is an excellent test of WH search tools
 - Same final state and similar topology
 - WZ→lvbb has effective cross section 4x higher than that predicted for WH→lvbb (H @ 120 GeV/c²)

	WZ	WH (120 GeV/c ²)
Production cross section	3.96pb	0.16pb
W->lv (e or μ) branching fraction	0.21	0.21
Z/H->bb branching fraction	0.15	0.8
$XSec \times BR(W \rightarrow Iv) \times BR(Z/H \rightarrow bb)$	0.12pb	0.03pb

- Plan to set a limit/observe WZ production in order to test the b-jet identification tools and sophisticated search techniques used for WH
- CDF recently observed WW/WZ \rightarrow lvjj without identifying the b-jet, with a signal significance of 5.4 σ (16±3.3pb)

Fermilab at a Glance

Nov 24, HEP Seminar@UPenn

Justin Keung, University of Pennsylvania

Page 7 Of 34

Tevatron Performance

Collider Run II Integrated Luminosity

CDF Performance

- Why WZ→lvbb?
 - Higgs search effort
 - Fermilab, Tevatron and CDF
- Improvements in b-jet identification
 - Importance in the WZ/WH \rightarrow lvbb search
 - Measurement of per-jet efficiency and background rate in data
- Search for the WZ
 - Background composition
 - Sensitivity estimates
 - Neural Network

WZ/WH Event Selection

- <u>Missing Transverse Energy</u> → MET > 20 GeV
- Two *b*-jets
 - $E_T > 20 \text{ GeV}$
 - ≽ |η| < 2.0
 - ➢ Jet cone size 0.4
 - ➤ identification of b-jet
 - My contribution: improving b-jet identification

WZ	% efficiency	percent of initial
Fiducial Lepton	60.3	60.3
Lepton E _T >20GeV	84.2	50.8
Reconstructed & Identified	58.7	29.8
MET > 20GeV	88.3	26.3
2 jets, both E_{τ} >20GeV and Fiducial	37.4	9.9
Both identified as b-jet	11.6	1.1

Why Identify the b-jets

- Identification of b-jets improves the signal to background ratio
- Important to improve b-jet identification efficiency to gain more signal in the best signal to background channel
 - If per-jet efficiency increases 10%, then the number of events with 2 identified b-jets increases 21%

New b-jet Identification Algorithm

- Roma Neural Network
- Simulations claims a 30% increase in per-jet efficiency for same background rate as default algorithm
- I measured this per-jet efficiency and background rate in data

Advantages

Increased per-jet efficiency at same background rate than SecVtx:

Nov 24, HEP Seminar@UPenn

Jets

- If the quark was produced with significant energy, the hadrons produced will be in a narrow cone
- This spray of particles is called a jet

Hadronization →

Bottom Quarks

- The bottom quark is the second heaviest quark
 - B-mesons have masses
 ~5.3GeV/c² and up,
 B-baryons have masses
 ~5.6GeV/c² and up
- B-hadrons have mean lifetime of ~1.5ps
 - Example: a 53 GeV b-jet has γ=10, and travels almost at c, so on average it travels 4.5mm before decaying
- We want to identify with some certainty that the jet has within it a B hadron
 - This identification is called "b-tagging", or to "tag" the b-jet

Bottom Jets Identification

High Energy

Physics

Bottom Jets Identification

- "Long"-lived and massive
 - On average ~5 charged tracks per b-jet
 - Secondary vertex significantly displaced from primary vertex → SecVtx
 - More tracks with large impact parameters \rightarrow **JetProb**
 - CDF Silicon detector has track hit resolution of 10um, impact parameter resolution is 30um
- Decays semileptonically \rightarrow SLT
 - 40% of b-jets has a muon/electron within the jet
- RomaNN uses all of this information to enhance identification efficiency while keeping misidentification rate manageable

Neural Network Based b-jet Identification Algorithm

- 4 cascaded levels of Neural Networks trained by INFN-Roma
 - Vertex identification
 - Look for all vertices
 - SecVtx looks for only one
 - Track identification
 - Tell unvertexed tracks from prompt tracks
 - One by one "expert" flavor separation
 - Combines SecVtx, JetProb, SLT with Vertex/Track NNs
 - Final separation:
 - 3 flavor (b,c,LF) or 5 flavor (b,bb,c,cc,LF)
 - Using 3 flavor NN separation
 - "NN3out": outputs [-1,1]

- Require NN output greater than a cut
- Three calibrated cuts: UltraLoose/Loose/Tight
 - They have different b-purity and efficiency
- Two important quantities need to be calibrated
 - Efficiency for b-jet identification
 - > Misidentification rate (rate of false positives)

Data Efficiency Measurement

electron jets not-tagged (right)

- Split sample into two subsets
 - electron jets tagged (left),

CDF Run II Preliminary 3 fb⁻¹

Nov 24, HEP Seminar@UPenn

Data Efficiency Result

- Scale factor (SF) corrects the MC efficiency to Data efficiency
 - needed to find acceptances and yields in b-based analyses
- SF clearly decreases as the number of z vertices increases
- SF does not vary significantly with Jet E_T , Jet Eta etc

Note on Efficiency Calibration

- > Electron and hadron-jets have similar NN output
 - > Can calibrate efficiency for generic jets with electron jets
 - > First time electrons P_T^{rel} used in CDF
- > Muon and hadron-jets have different NN outputs
 - > Cannot calibrate efficiency for generic jets with muon jets
 - > Must calibrate efficiency for muon jets separately

High Energy

Physics

- Misidentifications are due to spurious large impact parameter tracks
 - From limited detector resolution, longlived light particle decays, and material interactions
- For simple b-tag algorithms, misidentification due to the limited detector resolution is expected to be symmetric in their signed 2D displacement of the vector separating the primary and secondary vertices

b-tagging Calibration: Misidentification Rate

- For a more complex b-tag algorithm, the misidentifications due to the limited detector resolutions cannot now be expected to be symmetric in any single variable
- The strategy used is to measure the overall tag rate, then subtracting from it the tag rate due to real b-jets

 $rate^{mistag}_{RomaNN} = rate^{+}_{RomaNN} - rate^{heavy} \times (\epsilon^{b}_{RomaNN} \times ScaleFactor_{RomaNN})$

 $rate^{heavy} = \frac{(rate^{+}SecVtx}) - \alpha\beta(rate^{-}SecVtx}){\epsilon^{b}SecVtx} \times ScaleFactor_{SecVtx}}$

We characterize the misidentification rate using a matrix, predicting the misidentification rate for each jet based on several of its parameters, such as its energy and location within the detector

High Energy

Physics

b-tagging Performance Comparison

- Compare the two important calibrated quantities
 - Efficiency: use b-jets from WH simulation
 - > Misidentification rate: use jets from WH data sample
- > Default b-tag tool performs similar to new b-tag tool
 - 30% increase in per-jet efficiency for same background rate seen in simulation was not seen in data
- UltraLooseRomaNN useful to increase signal efficiency
 - CDF WH search summer 2009: increased signal acceptance by 20% in the double-tag category

- Why WZ→lvbb?
 - Higgs search effort
 - Fermilab, Tevatron and CDF
- Improvements in b-jet identification
 - Importance in the WZ/WH \rightarrow lvbb search
 - Measurement of per-jet efficiency and background rate in data
- Search for the WZ
 - Background composition
 - Sensitivity estimates
 - Neural Network

- Unfortunately, many physics processes can lead us to the identification of a lepton, a neutrino, and two b-quark jets
 - 90% is irreducible background
 - top quark pair production, single top quark production, Wbb

• The other 10% of background: Wcc, Wc, Wlf, Zlf, QCD

Signal and Background Expectation

- Expected WZ yield is 3% of all lvbb events, counting experiment will not give enough sensitivity to observe WZ
 - Need to use additional information in the events to distinguish between signal and background
 - For example, we expect the invariant mass of the two b-jets from WZ to resemble the z mass peak, whereas the background is more diffuse
 - Using M_{bb} , expected 95% Confidence limit is 3.6x standard model cross section with 4.3fb⁻¹ for WZ

where \hat{y}_{S} \hat{y}_{B} are signal and background PDFs of y.

Nov 24, HEP Seminar@UPenn

Justin Keung, University of Pennsylvania

Page 30 Of 34

Neural Network

- Try to improve sensitivity by using a stronger discriminating variable: Neural Network
- Train and test to search for the best neural network with the fewest input variables
- For the additional complexity involved in using more inputs, not much separation gain after four variables

Input to TMVA Neural Net, Normalized

Signal Limit Estimate With Neural Network

- After training Neural Network, the most sensitive bins are transferred to the right
- Expected 95% Confidence limit is now 3.4x standard model cross section (improvement from 3.6x with M_{bb} alone)
- Apart from $M_{\rm bb},$ other kinematical quantities and angular distributions contribute to a 6% improvement in limit

Improvements

- My work in progress
 - UltraLooseRomaNN in use already to obtain 20% acceptance gain
 - Measurement of top quark pair production to validate this new b-jet identification algorithm
 - Optimizing for the b-jet identification purity operating point, by comparison of expected WZ limit
- Other improvements from the WH working group
 - Use additional "loose lepton" categories (>10% acceptance gain)
 - Improve b-jet energy resolution (>5% improvement in limit)
 - Goal is to improve dijet invariant mass resolution
 - Add τ leptons (>5% acceptance gain) \rightarrow Elisabetta Pianori @UPenn

- Searching for WZ \rightarrow lvbb, part of the Higgs search effort
 - Improved b-jet identification
 - Utilized Neural Network to improve signal sensitivity
- Expect a limit of 3.4x standard model WZ cross section using 4.3fb⁻¹
- Expect total of ~10fb⁻¹ after 2 more years

2xCDF Preliminary Projection, m_µ=115 GeV

Training a Neural Network

- Train and test to search for the best neural network with the fewest input variables
- For the additional complexity involved in using more inputs, not much separation gain after four variables

where $\hat{y}_S \hat{y}_B$ are signal and background PDFs of y.

- Use 9 variables known to have the most separation power
 - Using TMVA Neural Network (MLP) with WZ as signal, and as background the cocktail from the background estimation table
- For all 511 NNs, same training set and testing set of events were used
 - (18k training events, 54k testing events)

Nov 24, HEP Seminar@UPenn

- Neural Network uses more information \rightarrow better sensitivity
 - 2 studies: training sample size, and number of variables used
- Insufficient training sample reduces separation power
 - Using off the shelf TMVA Neural Network and Boosted Decision Tree with different training sample size, fixed 89000 testing size
 - Want (nTest>>nTrain) to measure separation power without statistical jitter from small testing sample size
 - E.g. for NN, with nTrain=nTest=700, Separation = 0.474
 - This study used events from WZ vs Wbb (50% of bkgnd)
 - Included events with >=2 jets to increase statistics

• Separation:
$$\langle S^2 \rangle = \frac{1}{2} \int \frac{(\hat{y}_S(y) - \hat{y}_B(y))^2}{\hat{y}_S(y) + \hat{y}_B(y)} dy$$

where $\hat{y}_S \hat{y}_B$ are signal and background PDFs of y.

- Too much information provide leads to statistical noise, weakens the resulting Neural Network discriminant
 - Seek to provide information to the neural network in an optimal manner
- But how to choose input variables for the Neural Network? Nov 24, HEP Seminar@UPenn Justin Keung, University of Pennsylvania

CEM Acceptance

WZ vs WH CEM acceptance (Wbb is bkgd)
 W→e+nu and b pair required in HEPG

	#events			this stage only, %			percent of initial		
all jet bins	WZ	WH	Wbb	WZ	WH	Wbb	WZ	WH	Wbb
Stage 0 Initial	2100	3407	10000	100	100	100	100	100	100
Stage 1 HEPG e Eta <1.1	1266	2428	5899	60.29	71.27	58.99	60.29	71.27	58.99
Stage 2 HEPG e ET>20GeV	1066	2161	5102	84.2	89	86.49	50.76	63.43	51.02
Stage 3 RECO+ID e in CEM	626	1267	2974	58.72	58.63	58.29	29.81	37.19	29.74
Stage 4 MET > 20GeV	553	1114	2713	88.34	87.92	91.22	26.33	32.7	27.13
Stage 5 2 jets ET>20GeV Eta <2.0	207	592	210	37.43	53.14	7.741	9.857	17.38	2.1
Stage 6 both SecVtx Tight	24	76	18	11.59	12.84	8.571	1.143	2.231	0.18

- Stage 1+2 : e from WZ has lower average ET than WH
- Stage 5 : jets from Z have lower average ET than from
 H, since Z mass is lower than H mass (120 GeV/c² here)
- Stage 6 : jets from Z have lower average tag rate than from H due to lower ET

Data Efficiency Result: Muon Jets

- Scale factor (SF) corrects the MC efficiency to Data efficiency
 - needed to find acceptances and yields in b-based analyses
- SF clearly decreases as the Jet E_{T} increases
- SF does not vary significantly with # z vertex, Jet Eta etc

Backup: Legend in more detail

- tight-jet: E_T > 20GeV and |eta| < 2.0
- loose-jet: 12GeV < E_T < 20GeV and |eta| < 2.4

	Legend		
а	:	massDijetTagged	
b	:	wJ1J2Pt	
с	:	dRMetMaxLep	
d	:	sumLooseJetEt	
e	:	minMlnb	
f	:	maxMInb	
g	:	HT	
h	:	ptW	
i.	:	MetMag	

- DijetMass: Largest vector sum mass of all pairs of tagged-jet
- $WJ1J2P_{T}$: Vector sum P_{T} of (lepton + Met + dijet)
- dRMetMaxLep: deltaR between lepton and Met
 - $|Met_z|$ is chosen such that the Mass(lepton+Met) = W mass
 - sign(Met_z) chosen such that it maximizes dRMetMaxLep
- sumLooseJetE_T: Scalar sum of all loose-jets
- minMlnb: minimum invariant mass of the lepton, Met, and 1 of the b-jet
- maxMlnb: maximum invariant mass of the lepton, Met, and 1 of the b-jet
- HT: Scalar sum $E_{\rm T}$ of all tight-jets and loose-jets and lepton and Met
- P_TW : P_T of the vector sum lepton and Met
- MetMag: |Met|

