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• Why WZ lvbb ?
• Higgs search effort
• Fermilab, Tevatron and CDF

• Improvements in b-jet identification
• Importance in the WZ/WH lvbb search
• Measurement of per-jet efficiency and background rate 

in data

• Search for the WZ
• Background composition
• Sensitivity estimates
• Neural Network
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Searching for Higgs @Tevatron
• Tevatron needs more sensitivity at 

low mass region (H bb)
• One important improvement: 

increase b identification power

Low 
mass 
region

High 
mass 
region
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Higgs Production @Tevatron
• Direct production gg H bb

swamped by huge (~107x) 
background QCD bb

• Associated production WH lvbb
reduces QCD background rate

– Leptonic decay (into either electron 
or muon) gives a distinct signature 
for efficient triggering

– Most sensitive process for low mass 
Higgs searches
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• Z resonant production is similar 
to H resonant production
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WZ lvbb Search
• WZ lvbb is an excellent test of WH search tools

– Same final state and similar topology
– WZ lvbb has effective cross section 4x higher than that 

predicted for WH lvbb (H @ 120 GeV/c2)

• Plan to set a limit/observe WZ production in order to test 
the b-jet identification tools and sophisticated search 
techniques used for WH

• CDF recently observed WW/WZ lvjj without identifying 
the b-jet, with a signal significance of 5.4σ (16±3.3pb)

WZ WH (120 GeV/c2)
Production cross section 3.96pb 0.16pb
W->lv (e or μ) branching fraction 0.21 0.21
Z/H->bb branching fraction 0.15 0.8
XSec x BR(W lv) x BR(Z/H bb) 0.12pb 0.03pb
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Fermilab at a Glance
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Tevatron Performance



Page Of 34

year  2002                2003            2004      2005     2006    2007     2008        2009
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CDF Performance

85% data 
taking 

efficiency



Page Of 34Nov 24, HEP Seminar@UPenn

Outline

10Justin Keung, University of Pennsylvania

• Why WZ lvbb ?
• Higgs search effort
• Fermilab, Tevatron and CDF

• Improvements in b-jet identification
• Importance in the WZ/WH lvbb search
• Measurement of per-jet efficiency and background rate 

in data

• Search for the WZ
• Background composition
• Sensitivity estimates
• Neural Network



Page Of 34

WZ/WH Event Selection
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• High pT lepton
pT > 20 GeV
|η| < 1.1

• Missing Transverse Energy
MET > 20 GeV

• Two b-jets
ET > 20 GeV
|η| < 2.0
Jet cone size 0.4
identification of b-jet
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WZ % efficiency percent of initial
Fiducial Lepton 60.3 60.3
Lepton ET>20GeV 84.2 50.8
Reconstructed & Identified 58.7 29.8
MET > 20GeV 88.3 26.3
2 jets, both ET>20GeV and Fiducial 37.4 9.9
Both identified as b-jet 11.6 1.1

• My contribution: 
improving b-jet 
identification
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Why Identify the b-jets

No b-jet 
identification

One b-jet 
identified

Two b-jets 
identified

• Identification of b-jets improves the signal to 
background ratio

• Important to improve b-jet identification efficiency 
to gain more signal in the best signal to background 
channel

• If per-jet efficiency increases 10%, then the number 
of events with 2 identified b-jets increases 21%
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• Roma Neural Network
• Simulations claims a 30% increase in per-jet efficiency for same 

background rate as default algorithm
• I measured this per-jet efficiency and background rate in data
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• In proton-antiproton collisions, 
quarks and gluons are produced

• After quarks are produced, 
they hadronize (also called 
fragment) into mesons and 
baryons

• If the quark was produced with 
significant energy, the hadrons 
produced will be in a narrow 
cone

• This spray of particles is called 
a jet

Hadronization 
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• The bottom quark is the 
second heaviest quark

• B-mesons have masses 
~5.3GeV/c2 and up,
B-baryons have masses 
~5.6GeV/c2 and up

• B-hadrons have mean lifetime 
of ~1.5ps

• Example: a 53 GeV b-jet has 
γ=10, and travels almost at c,
so on average it travels 4.5mm 
before decaying

• We want to identify with 
some certainty that the jet 
has within it a B hadron

• This identification is called
“b-tagging”, or to “tag” the b-jet
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“long”-lived and massive
(τ=1.5ps)       (>5.3 GeV)

decays semileptonically 40% 

• b eveX (BR ~ 10%)
• b μvμX (BR ~ 10%)
• b cX eveX (BR ~ 10%)
• b cX μvμX (BR ~ 10%)

Bottom Jets Identification
Identify b-jets from the fact that B hadrons are

Charm hadrons are
“long”-lived and massive
(τ=1.0ps D±)         (>1.9 GeV)

Charm hadrons decay 
semileptonically 20%

• c eveX (BR ~ 10%)
• c μvμX (BR ~ 10%)

Strange hadrons are 
“long”-lived and massive

(τ>90ps)            (~0.5 GeV)
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• “Long”-lived and massive
• On average ~5 charged tracks per b-jet
• Secondary vertex significantly displaced from primary 

vertex SecVtx
• More tracks with large impact parameters JetProb
• CDF Silicon detector has track hit resolution of 10um, 

impact parameter resolution is 30um

• Decays semileptonically SLT
• 40% of b-jets has a muon/electron within the jet

• RomaNN uses all of this information to enhance 
identification efficiency while keeping misidentification 
rate manageable
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Neural Network Based
b-jet Identification Algorithm
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• 4 cascaded levels of Neural Networks trained by 
INFN-Roma
– Vertex identification

• Look for all vertices
• SecVtx looks for only one

– Track identification
• Tell unvertexed tracks

from prompt tracks
– One by one “expert”

flavor separation
• Combines SecVtx,

JetProb, SLT with
Vertex/Track NNs

– Final separation:
• 3 flavor (b,c,LF) or 5 flavor (b,bb,c,cc,LF)
• Using 3 flavor NN separation

– “NN3out”: outputs [-1,1]
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RomaNN Usage
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• Require NN output greater than a cut
• Three calibrated cuts: UltraLoose/Loose/Tight

• They have different b-purity and efficiency
• Two important quantities need to be calibrated

Efficiency for b-jet identification
Misidentification rate (rate of false positives)
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b-tagging Calibration: Efficiency
• Select dijet events (bb) with

1. A jet tagged by loose SecVtx to improve b 
purity of the sample

2. A jet containing a lepton
e or μ Jet axispT rel

• Measure b efficiency in 
Data using Lepton PT

rel

– Due to the large b mass, the 
lepton transverse momentum 
relative to jet axis (PT

rel) is 
larger than for charm and 
light jets
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• Split sample into two subsets
• electron jets tagged (left),     electron jets not-tagged (right)
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Data Efficiency Measurement

Nb
noTag= 3537 

=51.0%b x 6935 jets
Nb

Tag= 2978
=90.2%b x 3302 jets
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• Scale factor (SF) corrects the MC efficiency to Data efficiency
• needed to find acceptances and yields in b-based analyses

• SF clearly decreases as the number of z vertices increases
• SF does not vary significantly with Jet ET, Jet Eta etc

Data Efficiency Result



Page Of 34Nov 24, HEP Seminar@UPenn 23Justin Keung, University of Pennsylvania

Note on Efficiency Calibration
Electron and hadron-jets have similar NN output

Can calibrate efficiency for generic jets with electron jets
First time electrons PT

rel used in CDF

Muon and hadron-jets have different NN outputs
Cannot calibrate efficiency for generic jets with muon jets
Must calibrate efficiency for muon jets separately
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b-tagging Calibration: Misidentification Rate
• Misidentifications are due to spurious 

large impact parameter tracks
• From limited detector resolution, long-

lived light particle decays, and material 
interactions

• For simple b-tag algorithms, 
misidentification due to the limited 
detector resolution is expected to be 
symmetric in their signed 2D displacement 
of the vector separating the primary and 
secondary vertices
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b-tagging Calibration: Misidentification Rate
• For a more complex b-tag algorithm, the misidentifications due to 

the limited detector resolutions cannot now be expected to be 
symmetric in any single variable

• The strategy used is to measure the overall tag rate, then 
subtracting from it the tag rate due to real b-jets

ratemistag
RomaNN = rate+

RomaNN − rateheavy × ( εb
RomaNN × ScaleFactorRomaNN)

rateheavy = (rate+
SecVtx)−αβ(rate−SecVtx)

εb
SecVtx×ScaleFactorSecVtx

• We characterize the misidentification 
rate using a matrix, predicting the 
misidentification rate for each jet 
based on several of its parameters, 
such as its energy and location within 
the detector

0.05 LooseRomaNN
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• Compare the two important calibrated quantities
Efficiency: use b-jets from WH simulation
Misidentification rate: use jets from WH data sample

Default b-tag tool performs similar to new b-tag tool
30% increase in per-jet efficiency for same background rate seen in 
simulation was not seen in data

UltraLooseRomaNN useful to increase signal efficiency
CDF WH search summer 2009: increased signal acceptance by 20% in the 
double-tag category

b-tagging Performance Comparison
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• Why WZ lvbb ?
• Higgs search effort
• Fermilab, Tevatron and CDF

• Improvements in b-jet identification
• Importance in the WZ/WH lvbb search
• Measurement of per-jet efficiency and background rate 

in data

• Search for the WZ
• Background composition
• Sensitivity estimates
• Neural Network
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Single Top
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lvbb Backgrounds
• Unfortunately, many physics processes can lead us to the 

identification of a lepton, a neutrino, and two b-quark jets
• 90% is irreducible background
• top quark pair production, single top quark production, Wbb

• The other 10% of background: Wcc, Wc, Wlf, Zlf, QCD

Top Pair 
Production Wbb
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Signal and Background Expectation
• Expected WZ yield is 3% of all lvbb events, counting experiment will 

not give enough sensitivity to observe WZ
• Need to use additional information in the events to distinguish between 

signal and background
• For example, we expect the invariant mass of the two b-jets from WZ to 

resemble the z mass peak, whereas the background is more diffuse
• Using Mbb, expected 95% Confidence limit is 3.6x standard model 

cross section with 4.3fb-1 for WZ

Background Composition 
4.3 fb-1

Both b-jets 
identified by 

TightRomaNN
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Neural Network
• Try to improve sensitivity by using a 

stronger discriminating variable: Neural 
Network 

• Train and test to search for the best neural 
network with the fewest input variables

• For the additional complexity involved in 
using more inputs, not much separation gain 
after four variables

nVar
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Input to TMVA Neural Net, Normalized
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Signal Limit Estimate With Neural Network
• After training Neural Network, the most sensitive bins are 

transferred to the right
• Expected 95% Confidence limit is now 3.4x standard model cross 

section (improvement from 3.6x with Mbb alone)

• Apart from Mbb, other kinematical quantities and angular distributions 
contribute to a 6% improvement in limit



Page Of 34Nov 24, HEP Seminar@UPenn 33Justin Keung, University of Pennsylvania

Improvements
• My work in progress

• UltraLooseRomaNN in use already to obtain 20% acceptance gain
• Measurement of top quark pair production to validate this new b-jet 

identification algorithm
• Optimizing for the b-jet identification purity operating point, by 

comparison of expected WZ limit

• Other improvements from the WH working group
• Use additional “loose lepton” categories (>10% acceptance gain)
• Improve b-jet energy resolution (>5% improvement in limit)

• Goal is to improve dijet invariant mass resolution
• Add τ leptons (>5% acceptance gain) Elisabetta Pianori @UPenn
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Summary
• Searching for WZ lvbb, part of the Higgs search effort

• Improved b-jet identification
• Utilized Neural Network to improve signal sensitivity

• Expect a limit of 3.4x standard model WZ cross section 
using 4.3fb-1

• Expect total of ~10fb-1 after 2 more years

Outlook for 
low mass 

Higgs search
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Training a Neural Network
• Train and test to search for the best neural network with 

the fewest input variables
• For the additional complexity involved in using more inputs, 

not much separation gain after four variables

• Use 9 variables known to have the most separation power
• Using TMVA Neural Network (MLP) with WZ as signal, and as 

background the cocktail from the background estimation table
• For all 511 NNs, same training set and testing set of events were used

• (18k training events, 54k testing events)

nVar
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Better Sensitivity with Neural Network
• Neural Network uses more information better sensitivity

• 2 studies: training sample size, and number of variables used

• Insufficient training sample reduces separation power
• Using off the shelf TMVA Neural Network
and Boosted Decision Tree with different 
training sample size, fixed 89000 testing size
• Want (nTest>>nTrain) to measure separation power 
without statistical jitter from small testing sample size

• E.g. for NN, with nTrain=nTest=700, Separation = 0.474
• This study used events from WZ vs Wbb (50% of bkgnd)
• Included events with >=2 jets to increase statistics

•

• Too much information provide leads to statistical noise, weakens the 
resulting Neural Network discriminant

• Seek to provide information to the neural network in an optimal 
manner

• But how to choose input variables for the Neural Network?
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CEM Acceptance
• WZ vs WH CEM acceptance (Wbb is bkgd)

– W e+nu and b pair required in HEPG

– Stage 1+2 : e from WZ has lower average ET than WH
– Stage 5 : jets from Z have lower average ET than from 

H, since Z mass is lower than H mass (120 GeV/c2 here)
– Stage 6 : jets from Z have lower average tag rate than 

from H due to lower ET
Effective XSec x BR x Acceptance gain(CEM only) 

is 4x(1.14/2.231)=2.05

#events this stage only, % percent of initial
all jet bins WZ WH Wbb WZ WH Wbb WZ WH Wbb
Stage 0  Initial 2100 3407 10000 100 100 100 100 100 100
Stage 1  HEPG e |Eta|<1.1 1266 2428 5899 60.29 71.27 58.99 60.29 71.27 58.99
Stage 2  HEPG e ET>20GeV 1066 2161 5102 84.2 89 86.49 50.76 63.43 51.02
Stage 3  RECO+ID e in CEM 626 1267 2974 58.72 58.63 58.29 29.81 37.19 29.74
Stage 4  MET > 20GeV 553 1114 2713 88.34 87.92 91.22 26.33 32.7 27.13
Stage 5  2 jets ET>20GeV |Eta|<2.0 207 592 210 37.43 53.14 7.741 9.857 17.38 2.1
Stage 6  both SecVtx Tight 24 76 18 11.59 12.84 8.571 1.143 2.231 0.18
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• Scale factor (SF) corrects the MC efficiency to Data efficiency
• needed to find acceptances and yields in b-based analyses

• SF clearly decreases as the Jet ET increases
• SF does not vary significantly with # z vertex, Jet Eta etc

Data Efficiency Result: Muon Jets
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• tight-jet: ET > 20GeV and |eta| < 2.0
• loose-jet: 12GeV < ET < 20GeV and |eta| < 2.4

• DijetMass: Largest vector sum mass of all pairs of tagged-jet
• WJ1J2PT: Vector sum PT of (lepton + Met + dijet)
• dRMetMaxLep: deltaR between lepton and Met

• |Metz| is chosen such that the Mass(lepton+Met) = W mass
• sign(Metz) chosen such that it maximizes dRMetMaxLep

• sumLooseJetET: Scalar sum of all loose-jets
• minMlnb: minimum invariant mass of the lepton, Met, and 1 of the b-jet
• maxMlnb: maximum invariant mass of the lepton, Met, and 1 of the b-jet
• HT: Scalar sum ET of all tight-jets and loose-jets and lepton and Met
• PTW: PT of the vector sum lepton and Met
• MetMag: |Met|

Backup: Legend in more detail



Page Of 34Nov 24, HEP Seminar@UPenn 43Justin Keung, University of Pennsylvania



Page Of 34Nov 24, HEP Seminar@UPenn 44Justin Keung, University of Pennsylvania


	Slide Number 1
	Outline
	Slide Number 3
	Slide Number 4
	Slide Number 5
	WZlvbb Search
	Fermilab at a Glance
	Tevatron Performance
	CDF Performance
	Outline
	Slide Number 11
	Why Identify the b-jets
	New b-jet Identification Algorithm
	Jets
	Bottom Quarks
	Bottom Jets Identification
	Bottom Jets Identification
	Slide Number 18
	Slide Number 19
	b-tagging Calibration: Efficiency
	Data Efficiency Measurement
	Data Efficiency Result
	Note on Efficiency Calibration
	b-tagging Calibration: Misidentification Rate
	b-tagging Calibration: Misidentification Rate
	b-tagging Performance Comparison
	Outline
	lvbb Backgrounds
	Signal and Background Expectation
	Neural Network
	Slide Number 31
	Signal Limit Estimate With Neural Network
	Improvements
	Summary
	Slide Number 35
	Training a Neural Network
	Better Sensitivity with Neural Network
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Data Efficiency Result: Muon Jets
	Backup: Legend in more detail
	Slide Number 43
	Slide Number 44

