Studying the Sun with SNO

Searching for High-Frequency Variations in the Solar Neutrino Flux

Aubra Anthony University of Colorado, Boulder

Astrophysics-Cosmology Seminar University of Pennsylvania March 3, 2010

Overview

- The Sudbury Neutrino Observatory
- High-frequency search: motivations
- Methodology of search
 - General
 - Directed
 - Broadband
- Results

The Sudbury Neutrino Observatory

- Nov. 1999 Dec. 2006
- Located in Sudbury, Ontario
- 6,800 ft underground in Vale INCO's Creighton #9 Mine (~6,000 m.w.e.)
- 1,000 tonnes D_2O
- 3 phases:
 - D₂O (clean measurement, poor n sensitivity)
 - D₂O + NaCl (better neutron sensitivity)
 - $D_2O + {}^{3}He$ proportional counters (n sensitivity)

Neutrino Interactions in SNO

Heavy Water Cherenkov detector \rightarrow 3 interactions possible CC, NC cross sections ~ 10x ES cross section

Standard Solar Model

Standard Solar Model: solar oscillations

Neutrino production: core p-mode (acoustic) oscillations: largely convective zone g-mode (gravity) waves: core and radiative zone

The Solar Neutrino Problem

Deficit of v_e 's from sun

SNO is unique \rightarrow first inclusive appearance experiment; showed that flux of three flavors *combined* (NC) agreed with predicted flux of v_e s *only* (CC) \rightarrow neutrino oscillations

SNO Low-Frequency Periodicity Search¹

 \Rightarrow No periodicities detected over range of periods, 1 day to 10 years

¹ A Search for Periodicities in the ⁸B Solar Neutrino Flux Measured by the Sudbury Neutrino Observatory, Phys. Rev. D 72 (2005) 052010

High Frequency Periodicity Search Motivation: *g*-modes

Solar g-mode oscillations:

- High-frequency, non-radial
- Gravity is restoring force
- Trapped; evanescent in convection zone, so difficult to observe with conventional methods

Solar p-mode oscillations:

- High-frequency, radial and non-radial
- Pressure is restoring force

• Only truly able to probe down to ~0.2R_{solar} (increase in sound-speed velocity with depth, so p modes spend more time in convection zone than radiative zone)

g-mode Oscillations: A Visualization

g-mode Oscillations: A Visualization

High Frequency Periodicity Search: Motivation - SoHO

Burgess *et al*. (and others) have shown possible effects of solar core density fluctuations, or "noise", on solar neutrino survival probability (MSW effect)

If density profile is noisy, could see time-dependent effects in the solar neutrino flux (different electron densities could affect neutrino's propagation)

Large-amplitude noise (shown here) ruled out; but small amplitudes?

High Frequency Periodicity Search: Motivation

•SNO: Low Backgrounds, real-time detector → good platform for testing for high frequency periodicity in sun

•Phenomenological predictions ("noise") and experimental (helioseismology) detection claims could be explored, verified

•Never been done!

•Novel approach, Rayleigh power test \rightarrow Allows faster processing and analysis, opening up larger frequency region

High-Frequency Method of Periodicity Analysis: The Rayleigh Power Test

Typically used in directional statistics: -pigeon homing -stopping position of a roulette wheel

> Equal probability of landing on any of the available numbers = isotropic distribution of 'events'

High-Frequency Method of Periodicity Analysis: The Rayleigh Power Test

Typically used in directional statistics: -pigeon homing -stopping position of a roulette wheel

> Uneven probability of landing on any of the available numbers = highly directional/nonisotropic distribution of 'events'

The Rayleigh Power Test

- Unbinned Analysis
- Less CPU-intense

→ Faster processing time: opens up higher-frequency regions

Rayleigh Power, z:

$$z = \frac{U^2}{N} = \frac{1}{N} \left[\left(\sum_{i=1}^N \cos \theta_i \right)^2 + \left(\sum_{i=1}^N \sin \theta_i \right)^2 \right]$$

where
$$\theta_i = 2\pi v t_i$$

$$\vec{U} = \sum_{i=1}^{N} \cos \theta_i \ \hat{e}_x + \sum_{i=1}^{N} \sin \theta_i \ \hat{e}_y$$

- *U* measures deviation from true 'randomness'
- Isotropic signal gives low Rayleigh power, z

Probability of seeing signal of strength greater than K :

 $P(z > K) = e^{-K}$

Signal Sensitivity of Rayleigh Power Test

Signal Sensitivity of Rayleigh Power Test

 \rightarrow changes significance of each peak

Rayleigh Power Structure

SNO MC with NO periodic signal built in,

ONLY deadtime window function

Sample RPwr Spectrum for High Freq Region, SNO D2O MC

Rayleigh Power Structure

Analyzing Rayleigh Power Spectra

- 1.6 million frequencies sampled (1/day to 1/10 min)
- Each frequency: unique distribution
- To obtain high confidence level value, sit at tail
- Trials Penalty!
- No longer possible to achieve necessary precision with Monte Carlo simulations alone
- Must develop predictive analytic form

The Rayleigh Power and The Random Walk

Resultant vector which determines value of Rayleigh power can be modeled by Random Walk

Each step corresponding to an event time, t_i

Central Limit Theorem in 2D predicts Gaussian distribution of resultant vectors

We can analytically calculate means, variances, etc. of these distributions, for instance:

$$\mu_x = \frac{1}{2\pi} \int_0^{2\pi} d\theta \cos\theta$$

Random Walk: Non-uniform Phase Coverage

Resultant vector which determines value of Rayleigh power can be modeled by Random Walk

Each step corresponding to an event time, t_i

Random Walk: Non-uniform Phase Coverage

Resultant vector which determines value of Rayleigh power can be modeled by Random Walk

Each step corresponding to an event time, t_i

Random Walk: Non-uniform Phase Coverage

Resultant vector which determines value of Rayleigh power can be modeled by Random Walk

→ Nonuniform phase coverage must be included in Random Walk model (deadtime restricts allowed event occurrence)

→ Design Gaussian parameters to account for nonuniform phase coverage $(g(\theta))$, for instance:

$$\mu_x = \int_{0}^{2\pi} g(\theta) d\theta \cos\theta \quad \text{or, more specifically:} \quad \mu_x = \frac{1}{T} \sum_{j=1}^{runs} \int_{t_{start,j}}^{t_{stop,j}} dt \cos\omega t$$

The Rayleigh Power and The Random Walk

No Deadtime

Distribution of Resultant Vectors Follows

The Rayleigh Power Analytic Form

Based on 'Random Walk' model applied to unit circle

$$\chi^{2}(X,Y) = (X - N\mu_{x}, Y - N\mu_{y}) \begin{pmatrix} N\sigma_{x}^{2} & N\cos(x,y) \\ N\cos(x,y) & N\sigma_{y}^{2} \end{pmatrix}^{-1} \begin{pmatrix} X - N\mu_{x} \\ Y - N\mu_{y} \end{pmatrix}$$
$$(X - N\mu_{x})^{2}\sigma_{y}^{2} \qquad (Y - N\mu_{y})^{2}\sigma_{x}^{2} \qquad 2(X - N\mu_{y})(Y - N\mu_{y})\cos(x,y)$$

$$= \frac{(X - N\mu_x) \sigma_y}{N\sigma_x^2 \sigma_y^2 - N \cos^2(x, y)} + \frac{(1 - N\mu_y) \sigma_x}{N\sigma_x^2 \sigma_y^2 - N \cos^2(x, y)} - \frac{2(X - N\mu_y)(1 - N\mu_y)\cos^2(x, y)}{N\sigma_x^2 \sigma_y^2 - N \cos^2(x, y)}$$

Here, μ_x is the average x-component, μ_y the average y-component, σ_x^2 is the variance in x, and σ_y^2 is the variance in y.

Again,
$$X = \sum_{i} \cos \theta_{i}$$
, $Y = \sum_{i} \sin \theta_{i}$, where $\theta_{i} = wt_{i}$

$$\mu_x = \frac{1}{2\pi} \int_0^{2\pi} g(\theta) d\theta \cos\theta \qquad \qquad \mu_y = \frac{1}{2\pi} \int_0^{2\pi} g(\theta) d\theta \sin\theta$$
$$\sigma_x^2 = \frac{1}{2\pi} \int_0^{2\pi} g(\theta) d\theta (\cos\theta - \mu_x)^2 \qquad \qquad \sigma_y^2 = \frac{1}{2\pi} \int_0^{2\pi} g(\theta) d\theta (\sin\theta - \mu_y)^2$$
$$\cos(x, y) = \frac{1}{2\pi} \int_0^{2\pi} g(\theta) d\theta (\cos\theta - \mu_x) (\sin\theta - \mu_y)$$

Analytic Rayleigh Power Form in High Frequency Region

Determination of Confidence Levels

Using analytic form for each frequency, find CL for each frequency sampled in 10,000 MC "data" sets

Determination of Confidence Levels

Determination of Confidence Levels

High Frequency Periodicity Results

Highest-Confidence Level Peak: 103.385/day at 2% CL → No high-frequency periodicity in SNO dataset!!

High Frequency Periodicity Results

Zoomed-in View of Low-frequency Region of High-frequency Search

High Frequency Periodicity Results

Zoomed-in View of Highest Peak in SNO dataset Frequency=103.38/day Rayleigh Power=12.06

High Frequency Rayleigh Power Sensitivity

Demonstrates the strength of signal that would be necessary for SNO to be able to claim 99%-confidence detection with 50% chance, and with 90% chance

SNO and SoHO

- GOLF experiment (aboard SoHO) recently claimed discovery of signal at 220.7 μHz, or ~19.07/day
- Signal corroborated by VIRGO (also aboard SoHO)
- Searching for a specific signal: can afford to sample smaller range of frequencies
- Directed region of frequency SNO can sample, reduce Trials penalty
- ➡ Run "Directed" Search:
 - ✦ No-signal MC
 - ✦ Confidence Level Generation
 - ✦ CL of CL's
 - ✦ Signal MC
 - ♦ Sensitivity Contours

Update on g-mode Research, R. Garcia et al., AN 999, No. 88, 1-9 (2006)

Directed Search Results

Highest-Confidence Level Peak: 19.2579/day at 58% CL
→ No High-frequency periodicity in SNO directed dataset!

Directed Search Sensitivity

search region due to improvement on Trials penalty

High-Frequency "Noise" Search: Method

- Single-peak detection replaced by multiple-peak detection
- Individual Rayleigh powers likely to be insignificant in single-peak search, but collectively significant
- Overall power spectrum will be distorted if multiple peaks deviate from null-hypothesis distributions

→ Search for noise by looking at distribution of Rayleigh powers' confidence levels

High-Frequency "Noise" Search: Null-Hypothesis Monte Carlo

High-Frequency "Noise" Search: SNO Combined-Phase Data

High-Frequency "Noise" Search: White Noise Signal Monte Carlo

Conclusion

- Theoretical and experimental motivations for high frequency signal: *g*-modes, density fluctuations could affect neutrino production or neutrino propagation
- Used modified Rayleigh power approach to determine power and significance at 1.6 million frequencies
- No high-frequency signal detected in SNO solar neutrino flux, for general (g-mode), directed (GOLF-motivated), or broadband ("noise") search
- Findings published in February 10 issue of ApJ: Searches for highfrequency variations in the ⁸B solar neutrino flux at the Sudbury Neutrino Observatory ApJ **710** (2010) 540-548.