

Reviews: The Physics of Heavy Z' Gauge Bosons, RMP 81, 1199 [0801.1345] The Standard Model and Beyond (CRC Press) Talk at: www.sns.ias.edu/~pgl/talks/zprime_10.pdf

Penn, October 2010

Additional References

- Z' Physics at the LHC, from P. Nath *et al.*, The Hunt for New Physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200-202, 185 (2010) [arXiv:1001.2693 [hep-ph]]
- The Physics of New U(1)' Gauge Bosons, SUSY09, AIP Conf. Proc. 1200, 55 (2010) [arXiv:0909.3260 [hep-ph]]
- J. Erler, PL, S. Munir and E. Rojas, Z' Searches: From Tevatron to LHC, arXiv:1010.3097 [hep-ph]
- J. Erler, PL, S. Munir and E. R. Pena, Improved Constraints on Z' Bosons from Electroweak Precision Data, JHEP 0908, 017 (2009) [arXiv:0906.2435 [hep-ph]]

Motivations

- Strings/GUTS (large underlying groups; U(n) in Type IIa)
 - Harder to break U(1)' factors than non-abelian (remnants)
 - Supersymmetry: $SU(2) \times U(1)$ and U(1)' breaking scales both set by SUSY breaking scale (unless flat direction)
 - μ problem
- Alternative electroweak model/breaking (TeV scale): DSB, Little Higgs, extra dimensions (Kaluza-Klein excitations, $M \sim R^{-1} \sim 2 \text{ TeV} \times (10^{-17} \text{cm}/R)$), left-right symmetry
- **Connection to hidden sector** (weak coupling, SUSY breaking/mediation)
- Extensive physics implications, especially for TeV scale Z^\prime

Penn, October 2010

Standard Model Neutral Current

$$\begin{split} -L_{\rm NC}^{\rm SM} &= g J_3^{\mu} W_{3\mu} + g' J_Y^{\mu} B_{\mu} = e J_{em}^{\mu} A_{\mu} + g_1 J_1^{\mu} Z_{1\mu}^0 \\ A_{\mu} &= \sin \theta_W W_{3\mu} + \cos \theta_W B_{\mu} \\ Z_{\mu} &= \cos \theta_W W_{3\mu} - \sin \theta_W B_{\mu} \\ \theta_W &\equiv \tan^{-1}(g'/g) \qquad e = g \sin \theta_W \qquad g_1^2 = g^2 / \cos^2 \theta_W \\ J_1^{\mu} &= \sum_i \bar{f}_i \gamma^{\mu} [\epsilon_L^1(i) P_L + \epsilon_R^1(i) P_R] f_i \qquad P_{L,R} \equiv \frac{(1 \mp \gamma^5)}{2} \\ \epsilon_L^1(i) &= t_{3i_L} - \sin^2 \theta_W q_i \qquad \epsilon_R^1(i) = -\sin^2 \theta_W q_i \\ M_{Z^0}^2 &= \frac{1}{4} g_1^2 \nu^2 = \frac{M_W^2}{\cos^2 \theta_W} \qquad \nu \sim 246 \text{ GeV} \end{split}$$

Penn, October 2010

Standard Model with Additional U(1)'

$$-L_{
m NC} = \underbrace{eJ^{\mu}_{em}A_{\mu}+g_{1}J^{\mu}_{1}Z^{0}_{1\mu}}_{SM} + \sum_{lpha=2}^{n+1}g_{lpha}J^{\mu}_{lpha}Z^{0}_{lpha\mu}
onumber \ J^{\mu}_{lpha} = \sum_{i}ar{f}_{i}\gamma^{\mu}[\epsilon^{lpha}_{L}(i)P_{L}+\epsilon^{lpha}_{R}(i)P_{R}]f_{i}$$

• $\epsilon_{L,R}^{\alpha}(i)$ are $U(1)_{\alpha}$ charges of the left and right handed components of fermion f_i (chiral for $\epsilon_L^{\alpha}(i) \neq \epsilon_R^{\alpha}(i)$)

• $g^{\alpha}_{V,A}(i) = \epsilon^{\alpha}_L(i) \pm \epsilon^{\alpha}_R(i)$

• May specify left chiral charges for fermion f and antifermion f^c

$$egin{aligned} \epsilon^lpha_L(f) &= Q_{lpha f} & \epsilon^lpha_R(f) &= -Q_{lpha f^c} \ Q_{1u} &= rac{1}{2} - rac{2}{3} \sin^2 heta_W & ext{and} & Q_{1u^c} &= +rac{2}{3} \sin^2 heta_W \end{aligned}$$

Penn, October 2010

Mass and Mixing

• Mass matrix for single Z'

$$M^2_{Z-Z^\prime}=\left(egin{array}{cc} M^2_{Z^0} & \Delta^2 \ \Delta^2 & M^2_{Z^\prime} \end{array}
ight)$$

• Eg., SU(2) singlet S; doublets $\phi_u = \begin{pmatrix} \phi_u^0 \\ \phi_u^- \end{pmatrix}$, $\phi_d = \begin{pmatrix} \phi_d^+ \\ \phi_d^0 \end{pmatrix}$

$$egin{aligned} M_{Z^0}^2 =& rac{1}{4} g_1^2 (|
u_u|^2 + |
u_d|^2) \ & \Delta^2 =& rac{1}{2} g_1 g_2 (Q_u |
u_u|^2 - Q_d |
u_d|^2) \ & M_{Z'}^2 =& g_2^2 (Q_u^2 |
u_u|^2 + Q_d^2 |
u_d|^2 + Q_S^2 |s|^2) \end{aligned}$$

$$u_{u,d} \equiv \sqrt{2} \langle \phi_{u,d}^0 \rangle, \qquad s = \sqrt{2} \langle S \rangle, \qquad
u^2 = (|
u_u|^2 + |
u_d|^2) \sim (246 \,\, {
m GeV})^2$$

Penn, October 2010

• Eigenvalues $M^2_{1,2}$, mixing angle heta

$$an^2 heta=rac{M^2_{Z^0}-M^2_1}{M^2_2-M^2_{Z^0}}$$

ullet For $M_{Z'} \gg (M_{Z^0}, |\Delta|)$

$$egin{aligned} &M_1^2 \sim M_{Z^0}^2 - rac{\Delta^4}{M_{Z'}^2} \ll M_2^2 & M_2^2 \sim M_2^2, \ & heta &\sim -rac{\Delta^2}{M_{Z'}^2} \sim C rac{g_2}{g_1} rac{M_1^2}{M_2^2} ext{ with } C = 2 \left[rac{Q_u |
u_u|^2 - Q_d |
u_d|^2}{|
u_u|^2 + |
u_d|^2}
ight] . \end{aligned}$$

Penn, October 2010

Kinetic Mixing

• General kinetic energy term allowed by gauge invariance

$$L_{kin}
ightarrow -rac{1}{4}F_{1}^{0\mu
u}F_{1\mu
u}^{0} -rac{1}{4}F_{2}^{0\mu
u}F_{2\mu
u}^{0} -rac{\sin\chi}{2}F_{1}^{0\mu
u}F_{2\mu
u}^{0}$$

• Negligible effect on masses for $|M^2_{Z^0}| \ll |M^2_{Z'}|$, but

$$-L
ightarrow g_1 J_1^\mu Z_{1\mu} + (g_2 J_2^\mu - g_1 \chi J_1^\mu) Z_{2\mu}$$

 Usually absent initially but induced by loops, e.g., nondegenerate heavy particles, in running couplings if heavy particles decouple, or by string-level loops (usually small)

Penn, October 2010

Anomalies and Exotics

• Must cancel triangle and mixed gravitational anomalies

- No solution except $Q_2 = 0$ for family universal SM fermions
- Must introduce new fermions: SM singlets like ν_L^c or exotic SU(2) (usually non-chiral under SM)

$$D_L + D_R, \qquad \qquad \left(egin{array}{c} E^0 \ E^- \end{array}
ight)_L + \left(egin{array}{c} E^0 \ E^- \end{array}
ight)_R$$

• Supersymmetry: include Higgsinos and singlinos (partners of S)

The μ Problem

- In MSSM, introduce Higgsino mass parameter μ : $W_{\mu} = \mu H_u H_d$
- μ is supersymmetric. Natural scales: 0 or $M_{Planck} \sim 10^{19} \text{ GeV}$
- Phenomenologically, need $\mu \sim$ SUSY breaking scale
- In Z' models, U(1)' may forbid elementary μ (if $Q_{H_u} + Q_{H_d} \neq 0$)
- If $W_\mu = \lambda_S S H_u H_d$ is allowed, then $\mu_{eff} \equiv \lambda_S \langle S \rangle$, where $\langle S \rangle$ contributes to $M_{Z'}$
- Can also forbid μ by discrete symmetries (NMSSM, nMSSM, \cdots), but simplest forms have domain wall problems
- U(1)' is stringy version of NMSSM

Models

- Enormous number of models, distinguished by gauge coupling g_2 , mass scale, charges Q_2 , exotics, kinetic mixing, couplings to hidden sector \cdots
- No simple general parametrization
- \bullet "Canonical" models: TeV scale M_{Z^\prime} with electroweak strength couplings
 - Sequential Z_{SM}
 - Models based on T_{3R} and B-L
 - E_6 models
 - Minimal Gauge Unification Models

Sequential Z_{SM}

- Same couplings to fermions as the SM Z boson
 - Reference model
 - Hard to obtain in gauge theory unless complicated exotic sector [e.g., "diagonal" embedding of $SU(2) \subset SU(2)_1 \times SU(2)_2$]
 - Kaluza-Klein excitations with TeV extra dimensions

Models based on T_{3R} and B-L

- Motivated by minimal fermions (only u_L^c needed for anomalies), SO(10), and left-right $SU(2)_L imes SU(2)_R imes U(1)_{BL}$
- $T_{BL}\equiv rac{1}{2}(B-L),$ $T_{3R}=Y-T_{BL}=rac{1}{2}\;[u_R,
 u_R]$, $-rac{1}{2}\;[d_R,e_R^-]$
- For non-abelian embedding and no kinetic mixing

$$Q^{LR} = \sqrt{rac{3}{5}} \left[lpha T_{3R} - rac{1}{lpha} T_{BL}
ight]$$

$$lpha = rac{g_R}{g_{BL}} = \sqrt{(g_R/g)^2 \cot^2 heta_W - 1} \qquad g_2 = \sqrt{rac{5}{3}}g an heta_W \sim 0.46$$

• More general: $Q^{YBL} = aY + bT_{BL} \equiv b(zY + T_{BL})$

Penn, October 2010

	T_{3R}	T_{BL}	Y	$\sqrt{rac{5}{3}}Q^{LR}$	$rac{1}{b}Q^{YBL}$
$egin{array}{c} Q \ u_L^c \ d_L^c \ L_L \ e_L^+ \ u_L^c \ u_L^c \end{array}$	$ \begin{array}{c c} 0 \\ -\frac{1}{2} \\ \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ -\frac{1}{2} \end{array} $	$ \begin{array}{c} \frac{1}{6} \\ -\frac{1}{6} \\ -\frac{1}{6} \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $	$ \begin{array}{c} \frac{1}{6} \\ -\frac{2}{3} \\ \frac{1}{3} \\ -\frac{1}{2} \\ 1 \\ 0 \end{array} $	$-\frac{1}{6\alpha}$ $-\frac{\alpha}{2} + \frac{1}{6\alpha}$ $\frac{\alpha}{2} + \frac{1}{6\alpha}$ $\frac{1}{2\alpha}$ $\frac{\alpha}{2} - \frac{1}{2\alpha}$ $-\frac{\alpha}{2} - \frac{1}{2\alpha}$	$egin{array}{c} rac{1}{6}(z+1)\ -rac{2}{3}z-rac{1}{6}\ rac{1}{3}z-rac{1}{6}\ -rac{1}{2}(z+1)\ z+rac{1}{2}\ rac{1}{2} \end{array}$

The E_6 models

- Example of anomaly free charges and exotics, based on $E_6
 ightarrow SO(10) imes U(1)_\psi$ and $SO(10)
 ightarrow SU(5) imes U(1)_\chi$
- 3×27 : 3 S fields, 3 exotic $(D + D^c)$ pairs, 3 Higgs (or exotic lepton) pairs
- Supersymmetric version forbids μ term except χ model (SO(10))

SO(10)	SU(5)	$2\sqrt{10}Q_\chi$	$2\sqrt{6}Q_\psi$	$2\sqrt{15}Q_\eta$
16	$10(u,d,u^c,e^+)$	-1	1	-2
	$5^*~(d^c, u,e^-)$	3	1	1
	$ u^c$	-5	1	-5
10	$5 (D, H_u)$	2	-2	4
	$5^{st} \; (D^c, H_d)$	-2	-2	1
1	$1 \ S$	0	4	-5

Penn, October 2010

• General: $Q_2 = \cos \theta_{E_6} Q_{\chi} + \sin \theta_{E_6} Q_{\psi}$

$$g_2 = \sqrt{rac{5}{3}}g an heta_W\lambda_g^{1/2}, \qquad \lambda_g = \mathcal{O}(1)$$

SO(10)	SU(5)	$2Q_I$	$2\sqrt{10}Q_N$	$2\sqrt{15}Q_S$
16	$10(u,d,u^c,e^+)$	0	1	-1/2
	$5^*~(d^c, u,e^-)$	-1	2	4
	$ u^c$	1	0	-5
10	$5 (D, H_u)$	0	-2	1
	$5^{st} \; (D^c, H_d)$	1	-3	-7/2
1	1 S	-1	5	5/2

- GUT Yukawas violated (proton decay), e.g., by string rearrangement
- Gauge unification requires additional non-chiral $H_u + H_u^*$
- Can add kinetic term $-\epsilon Y \ (Q_{\chi} \epsilon Y \Rightarrow Q^{YBL})$

Minimal Gauge Unification Models

- \bullet Supersymmetric models with μ_{eff} and MSSM-like gauge unification
- 3 ordinary families (with ν^c), one Higgs pair $H_{u,d}$ and n_{55^*} pairs $(D_i + L_i)$ and $(D_i^c + L_i^c)$

	$oldsymbol{Q}_{55^*}$	$oldsymbol{Q}_{ ilde{oldsymbol{\psi}}}$		$oldsymbol{Q}_{55^*}$	$ig oldsymbol{Q}_{ ilde{m{\psi}}}$
$oldsymbol{Q}$	$oldsymbol{y}$	1/4	H_u	$oldsymbol{x}$	-1/2
u^{c}	-x-y	1/4	H_d	-1-x	-1/2
d^{c}	1+x-y	1/4	S_D	$3/n_{55^*}$	3/2
\boldsymbol{L}	1-3y	1/4	D_i	\boldsymbol{z}	-3/4
e^+	x + 3y	1/4	D_i^c	$-3/n_{55^*}-z$	-3/4
ν^{c}	-1 - x + 3y	1/4	S_L	$2/n_{55^*}$	1
\boldsymbol{S}	1	1	L_i	$\left \ rac{5-n_{55^*}}{4n_{55^*}} + x + 3y + 3z/2 ight $	-1/2
			L_i^c	$-2/n_{55^*}-Q_{L_i}$	-1/2

Penn, October 2010

Other Models

- TeV scale dynamics (Little Higgs, un-unified, strong $t\bar{t}$ coupling, \cdots)
- Kaluza-Klein excitations (large dimensions or Randall-Sundrum)
- **Decoupled** (leptophobic, fermiophobic, weak coupling, low scale/massless)
- Hidden sector "portal" (e.g., SUSY breaking, dark matter, or "hidden valley") [kinetic or HDO mixing, \tilde{Z}' mediation]
- Secluded or intermediate scale SUSY (flat directions, Dirac m_{ν})
- Family nonuniversal couplings (FCNC, apparent CPT violation)
- String derived (may be T_{3R}, T_{BL}, E_6 or "random")
- Stückelberg (no Higgs)
- Anomalous U(1)' (string theories with large dimensions)

Experimental constraints and prospects

• Tevatron (CDF, D0): resonance in $\bar{p}p \rightarrow e^+e^-, \mu^+\mu^-, \cdots$

 $AB \rightarrow Z_{lpha}$ in narrow width:

$$rac{d\sigma}{dy} = rac{4\pi^2 x_1 x_2}{3M_lpha^3} \sum_i (f^A_{q_i}(x_1) f^B_{ar q_i}(x_2) + f^A_{ar q_i}(x_1) f^B_{q_i}(x_2)) \Gamma(Z_lpha o q_i ar q_i)$$

$$egin{aligned} \Gamma^lpha_{f_i} &\equiv \Gamma(Z_lpha o f_i ar{f_i}) = rac{g_lpha^2 C_{f_i} M_lpha}{24\pi} \left(\epsilon^lpha_L(i)^2 + \epsilon^lpha_R(i)^2
ight) \ x_{1,2} &= (M_lpha/\sqrt{s}) e^{\pm y} \qquad C_{f_i} = ext{ color factor} \end{aligned}$$

Penn, October 2010

Penn, October 2010

- From 1010.3097 [hep-ph]: $Z' = \cos \alpha \cos \beta Z_{\chi} + \sin \alpha \cos \beta Z_{Y} + \sin \beta Z_{\psi}$
- Interference with γ, Z included in second plot

Penn, October 2010

• Low energy weak neutral current: Z' exchange and Z - Z' mixing (still very important)

$$-L_{eff} = rac{4G_F}{\sqrt{2}}(
ho_{eff}J_1^2 + 2wJ_1J_2 + yJ_2^2)$$

$$egin{aligned} &
ho_{eff} =&
ho_1\cos^2 heta +
ho_2\sin^2 heta & w = rac{g_2}{g_1}\cos heta\sin heta(
ho_1 -
ho_2) \ &y = \left(rac{g_2}{g_1}
ight)^2(
ho_1\sin^2 heta +
ho_2\cos^2 heta) &
ho_lpha \equiv M_W^2/(M_lpha^2\cos^2 heta_W) \end{aligned}$$

• Z-pole (LEP, SLC): Z - Z' mixing (vertices; shift in M_1)

$$egin{aligned} V_i &= \cos heta g_V^1(i) + rac{g_2}{g_1} \sin heta g_V^2(i) \ A_i &= \cos heta g_A^1(i) + rac{g_2}{g_1} \sin heta g_A^2(i) \end{aligned}$$

• LEP2: four-fermi operator interfering with γ, Z

Penn, October 2010

Z'	М _{Z'} [GeV]				$\sin \theta_{ZZ'}$			$\chi^2_{ m min}$
	EW	CDF	DØ	LEP 2	$\sin \theta_{ZZ'}$	$\sin heta_{ZZ'}^{\min}$	$\sin heta_{ZZ'}^{\max}$	
Z_{χ}	1,141	892	640	673	-0.0004	-0.0016	0.0006	47.3
Z_ψ	147	878	650	481	-0.0005	-0.0018	0.0009	46.5
Z_η	427	982	680	434	-0.0015	-0.0047	0.0021	47.7
Z_I	1,204	789	575		0.0003	-0.0005	0.0012	47.4
Z_S	1,257	821			0.0003	-0.0005	0.0013	47.3
Z_N	754	861			-0.0005	-0.0020	0.0012	47.5
Z_R	442				0.0003	-0.0009	0.0015	46.1
Z_{LR}	998	630		804	-0.0004	-0.0013	0.0006	47.3
Z_{SM}	1,401	1,030	780	1,787	-0.0008	-0.0026	0.0007	47.2
Z_{string}	1,362				0.0002	-0.0005	0.0009	47.7
SM	\sim			0			48.5	

Future Prospects

- Tevatron and LHC: $pp(\bar{p}p) \rightarrow Z' \rightarrow e^+e^-, \mu^+\mu^-, jj, \bar{b}b, \bar{t}t, e\mu, \tau^+\tau^-$
- Rates (total width) dependent on whether sparticle and exotic channels open $(\Gamma_{Z'}/M_{Z'} \sim 0.01 \rightarrow 0.05$ for E_6)
- $\bullet~{\rm LHC}$ discovery to $\sim 4-5~{\rm TeV}$
 - Spin-0 (Higgs), spin-1 (Z'), spin-2 (Kaluza-Klein graviton) by angular distribution, e.g.,

$$rac{d\sigma^f_{Z'}}{d\cos heta^*} \propto rac{3}{8}(1+\cos^2 heta^*) + A^f_{FB}\cos heta^*$$
 [for spin-1]

• ILC: 5σ intererence effects up to $\sim 5 \text{ TeV}$

Penn, October 2010

Diagnostics of Z' Couplings

- LHC diagnostics to 2-2.5 TeV
- Forward-backward asymmetries and rapidity distributions in $\ell^+\ell^-$

- Other two body decays (e.g., $t\bar{t}$)
- Lineshape: $\sigma_{Z'}B_\ell$, $\Gamma_{Z'}$
- au polarization
- Associated production $Z'Z, Z'W, Z'\gamma$
- Rare (but enhanced) decays $Z' o W ar{f_1} f_2$ (radiated W)
- $Z' o W^+W^-, Zh$, or $W^\pm H^\mp$: small mixing compensated by longitudinal W, Z

$$\Gamma(Z' o W^+W^-) = rac{g_1^2 heta^2 M_{Z'}}{192 \pi} \left(rac{M_{Z'}}{M_Z}
ight)^4 = rac{g_2^2 C^2 M_{Z'}}{192 \pi}$$

• LHC/ILC diagnostics complementary

Implications of a TeV-scale U(1)'

• Natural Solution to μ problem $W \sim hSH_uH_d \rightarrow \mu_{eff} = h\langle S \rangle$ ("stringy version" of NMSSM)

- Extended Higgs sector
 - Relaxed mass limits, couplings, parameters (e.g., $\tan \beta \sim 1$)
 - Higgs singlets needed to break $U(1)^\prime$
 - Doublet-singlet mixing, extended neutralino sector
 - \rightarrow non-standard collider signatures
- Extended neutralino sector
 - Additional neutralinos, non-standard couplings, e.g., light singlino-dominated, extended cascades
 - Enhanced cold dark matter, $g_{\mu}-2$ possibilities (even small aneta)

- Exotics (anomaly-cancellation)
 - Non-chiral wrt SM but chiral wrt U(1)'
 - May decay by mixing; by diquark or leptoquark coupling; or be quasi-stable
- Z' decays into sparticles/exotics (SUSY factory)
- Flavor changing neutral currents (for non-universal U(1)' charges)
 - Tree-level effects in B decay competing with SM loops (or with enhanced loops in MSSM with large $\tan \beta$)
 - $B_s \bar{B}_s$ mixing, B_d penguins
- Non-universal charges: apparent CPT violation (MINOS)

- Constraints on neutrino mass generation
 - Various versions allow or exclude Type I or II seesaws, extended seesaw, small Dirac by HDO; small Dirac by non-holomorphic soft terms; stringy Weinberg operator, Majorana seesaw, or small Dirac by string instantons
- Large A term and possible tree-level CP violation (no new EDM constraints) \rightarrow electroweak baryogenesis

W'

- Less motivated than Z', but possible
- W_L : diagonal $SU(2) \subset SU(2)_1 \times SU(2)_2$ (e.g., Little Higgs); large extra dimensions (Kaluza-Klein excitations)
- W_R : $SU(2)_L imes SU(2)_R imes U(1)$

• Issues

- Light Dirac or heavy Majorana ν_R
- U_R (right-handed CKM)

Conclusions

- New Z' are extremely well motivated
- TeV scale likely, especially in supersymmetry and alternative EWSB
- LHC discovery to 4-5 TeV, diagnostics to 2-2.5 TeV
- Implications profound for particle physics and cosmology
- Possible portal to hidden/dark sector (massless, GeV, TeV)