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The LHCb Collaboration
800 Physicists
54 Institutes
15 Countries

1 Group from USA

Basking in light of 2008                               
Nobel Prize to                                        
Kobayshi & Maskawa, “for the discovery of the 
origin of the broken symmetry which predicts the 
existence of at least 3 families of quarks”
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Quark Mixing & the CKM Matrix

A, λ, ρ and η are in the Standard Model 
fundamental constants of nature like G, or αEM

η multiplies i and is responsible for CP violation
We know λ=0.22 (Vus), A~0.8; constraints on ρ & η
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Current Status of CP & Other Measurements

SM CKM 
parameters are: 
A~0.8, λ=0.22, ρ & 
η
CKM Fitter  results 
using CP violation 
in J/ψ KS, ρ+ρ−, DK-, 
KL, & Vub,Vcb & ΔMq
The overlap region 
includes CL>95%
Similar situation 
using UTFIT
Measurements 
“consistent”

Note: ρ = ρ(1−λ2/2)
η = η(1−λ2/2)



What don’t we know: Physics Beyond 
the Standard Model
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Physics Beyond the Standard Model
Baryogensis: CPV measurements thus far indicate 
(nB-nB)/nγ = ~6x10-10, while SM can provide only    
~10-20. Thus New Physics must exist
Dark Matter

Hierarchy Problem: We don’t understand how 
we get from the Planck scale of Energy ~1019

GeV to the Electroweak Scale ~100 GeV without 
“fine tuning” quantum corrections
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Gravitational
lensing



Flavor Problems 
Why do the fermions have their specific 
masses? Why are the masses in general 
smaller than the electroweak scale?
Why do the mixing angles (the CKM matrix 
elements) have their specific values?
Is there a new theory that relates the CKM 
matrix elements to masses? 
What is the relationship between the CKM 
matrix and the neutrino mixing matrix?
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Limits on New Physics
What we observe is the sum of Standard 
Model + New Physics. How to set limits on 
NP?
Assume that tree level diagrams are 
dominated by SM and loop diagrams could 
contain NP

Tree diagram example                  Loop diagram example
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Tree Level Only
Tree diagrams are unlikely to be affected by physics 
beyond the Standard Model



CP Violation in Bo & Ko Only
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Absorptive (Imaginary) of mixing diagram should be 
sensitive to New Physics



They are Consistent
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Limits on New Physics From Bo Mixing 
Is there NP in Bo-Bo

mixing?

Assume NP in tree 
decays is negligible, so 
no NP in |Vij|, γ from   
B-→DoK-.
Allow NP in Δm, weak 
phases, ASL, & ΔΓ. 

o SM+NP o o SM o
2 d 2

d d d

B | |B B | |B

Re Im

NP
B B

NP i
Δ = Δ =Η = Δ Η

Δ = Δ + Δ

Room for new physics, in fact
SM is only at 5% c.l.

95% c. l.



Limits on New Physics From BS Mixing 
Similarly for BS

One CP Violation 
measurement 
using BS→J/ψ φ

Here again SM 
is only at 5% c.l.
Much more room 
for NP due to 
less precise 
measurements
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New Physics Models
There is, in fact, still lots of room for “generic” NP
What do specific models predict?

Supersymmetry: many, many different models
Extra Dimensions:             ″
Little Higgs:                         ″
Left-Right symmetric models ″
4th Generation models ″

NP must affect every process; the amount tells 
us what the NP is (“DNA footprint”)
Lets go through some examples, many other 
interesting cases exist
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Supersymmetry: SU(5)  &U(2)

−2βS can deviate from the “SM” value of -0.036 in 
SU(5) GUT non-degenerate case, and the U(2) 
model. From Okada’s talk at BNMII, Nara Women’s Univ. Dec., 2006

SU(5) GUT
Degenerate 

SU(5) GUT
Non-degenerate U(2) FS

−2βS
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Extra Dimensions
Using ACD model of 1 universal extra dimension, a 
MFV model, Colangelo et al predict a shift in the zero 
of the forward-backward asymmetry in B→K*μ+μ−

Insensitive to choice of form-factors. Can SM 
calculations improve?

SM prediction form-factor 1 SM prediction form-factor 2

AFB
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The LHCb Detector
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Detector Requirements - General
Every modern heavy quark experiment needs:

Vertexing: to measure decay points and reduce 
backgrounds, especially at hadron colliders
Particle Identification: to eliminate insidious 
backgrounds from one mode to another where 
kinematical separation is not sufficient
Muon & electron identification because of the 
importance of semileptonic & leptonic final states 
including J/ψ decay
γ, πo & η detection
Triggering, especially at hadronic colliders
High speed DAQ coupled to large computing for data 
processing
An accelerator capable of producing a large rate of b’s
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Basics For Sensitivities
# of b’s into detector acceptance
Triggering 
Flavor tagging
Background reduction 

Good mass resolution
Good decay time resolution
Particle Identification
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The Forward Direction at the LHC
In the forward region at LHC 
the bb production σ is large
The hadrons containing the b & 
b quarks are both likely to be in 
the acceptance
LHCb uses the forward 
direction, 4.9 > η >1.9, where 
the B’s are moving with 
considerable momentum ~100 
GeV, thus minimizing multiple 
scattering 
At L=2x1032/cm2-s, we get 1012

B hadrons in 107 sec  
Univ. of Penn., April 7, 2010
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100 μb
230 μb

Pythia production cross section
(14TeV)

η

pT

θ B (rad)
θ B (rad)

Production
∠ Of B vs B
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The LHCb Detector
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Detector Workings

23

LHCb detector ~ fully installed and commissioned walk through the 
detector using the  example of a Bs→DsK decay
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φ
sensors

R
sensors

B-Vertex Measurement

Vertexing:
• trigger on impact parameter
• measurement of decay distance (time)

Ds

Bs K+

K−

K+

π−

d~1cm

47 μm 144 μm

440 μm
Primary vertex

Decay time resolution = 40 fs

σ(τ) ~40 fs

Example: Bs → Ds K

Vertex Locator (Velo)

Silicon strip detector with

~ 5 μm hit resolution

30 μm IP resolution
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Momentum and Mass measurement 
Momentum meas. + direction (VELO):             
Mass resolution for background suppression

25

btag

Bs K+

K−

π+, K+

π−
Ds

Primary vertex

Bs→ Ds K
Bs →Ds π

Mass  resolution
σ ~14 MeV
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Hadron Identification

RICH2:   100 m3 CF4 n=1.0005

RICH: K/π identification using Cherenkov light emission angle

RICH1:   5 cm aerogel n=1.03

4 m3 C4F10 n=1.0014

250 mrad

Track

Beam pipe

Photon
 Detectors

Aerogel

VELO exit window

Spherical
Mirror

Plane
Mirror

C4F10

0   100   200         z  (cm)

Magnetic
shielding

btag

Bs K+

K−

π+,K+

π−
Ds

Primary vertex

K K : 96.77 ± 0.06%
π K : 3.94 ± 0.02%

Bs → Ds K

26

SS flavour tagging
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Particle identification and L0 trigger

e

h

Calorimeter system :  
• Identify electrons, hadrons, π0 ,γ
• Level 0 trigger: high ET electron and hadron

btag

Bs K+

K−

K+

π−
Ds

Primary vertex

ECAL (inner modules):  σ(E)/E ~ 8.2% /√E + 0.9%
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Particle identification and L0 trigger

μ

Muon system:
• Level 0 trigger: High Pt muons
• OS flavour tagging
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Hardware level (L0)
Search for high-pT μ, e, γ and hadron candidates 

Software level (High Level Trigger, HLT)
Farm with O(2000) multi-core processors
HLT1: Confirm L0 candidate with more complete
info, add impact parameter and lifetime cuts
HLT2: B reconstruction + selections

H
ig

h-
Le

ve
l T

ri
gg

er

2 kHz

Le
ve

l -
0

L0 
e, γ

40 MHz

1 MHz

L0 
had

L0 
μ

ECAL
Alley

Had.
Alley

Global reconstruction30 kHz

H
LT

1
H

LT
2

Muon
Alley

Inclusive selections
μ, μ+track, μμ, 

topological, charm, ϕ
&  Exclusive selections

Storage: Event size ~35kB

ε(L0) ε(HLT1) ε(HLT2)

Electromagnetic 70 %

> ~80 % > ~90 %Hadronic 50 %

Muon 90 %

Trigger is crucial as σbb is less than 1% of total 
inelastic cross section and B decays of 

interest typically have B < 10-5

Triggering
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Commissioning with Cosmics
Challenge: LHCb is NOT                                     
suited for cosmics

“Horizontal” cosmics well 
below a Hz
Still 1.6x106 good events                                            
(July – September 2008 ) 
recorded for Calorimeters
& Muon

Alignment in time and space was done
L0 trigger parameters were set
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LHCb@LHC Sector Tests

Beam 2 dumped on injection line beam stopper (TED)
4 m tungsten, copper, aluminium, graphite rod in a 1m diameter iron casing
340 m before LHCb along beam 2

“Wrong” direction for LHCb
Centre of shower in upper right quadrant
High flux, centre of shower O(10) particles/cm2

Vertex Locator O(0.1) particles/cm2

TED

TI8

LHC

A First Glimpse of LHC Protons
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A First Glimpse of LHC Protons

Velo tracks, 
August 22, 2008 

Vertex Locator

Muon : 70 candidates in average per shot

Scintillator Pad Detector
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VELO Space Alignment with TED
The detector displacement from metrology usually is 
less than 10 μm

Module alignment precision is about 3.4 μm for X and 
Y translation and 200 μrad for Z rotation

R residuals

Φ residuals
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LHCb Data
A few glimpses of real pp collision data (0.9 TeV)
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VELO partially closed

VELO nominally at ~8 mm from beam
kept at 15 mm due to beam hazards



Tracking & Calorimetry
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Particle Identification
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Luminosity

Profile from beam-gas collisions
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Beam Sizes from Beam-Gas
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Size of Luminous Region
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Ko Yields
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Start at 7 TeV
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Some Interesting Measurements 
& Sensitivities
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LHCb expectations: ≥ 300 fb-1 in 2010
~   2 fb-1 for nominal yr
~ 10 fb-1 for “1st run”
~100 fb-1 for upgrade



Two years at 3.5 TeV
2010: should peak at 1032 and yield up to 0.5 fb-1

2011: ~1 fb-1 at 3.5 TeV
2012: splice consolidation (and cryo collimator 
prep.)
2013: 6.5 TeV - 25% nominal intensity
2014: 7 TeV – 50% nominal intensity

LHC Luminosity Projections
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Peak 
Lumi
x1032

Lumi
per
month

Int Lumi
Year GPD’s
(LHCb)

Int Lumi
Cul GPDs
(LHCb)

2010 8 3.5 2.5 7 e10 720 1.2 - 0.5 (0.5) 0.5 (0.5)
2011 8 3.5 2.5 7 e10 720 1.2 0.1 0.8 (0.8) 1.3 (1.3)
2012

2013 6 6.5 1 1.1 e11 720 14 1.1 7 (2) 8 (3.8)

2014 7 7 1 1.1 e11 1404 30 2.3 16 (2) 24 (5.8)

Aggressive



Independent estimate
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Courtesy of a rather pessimistic but perhaps 
more realistic  Massi Ferro-Luzzi

At least in the same ball park
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Peak 
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x1032

Lumi
per
month

Int Lumi
Year  GPD’s 
(LHCb)

Int Lumi
Cumlative
GPD’s (LHCb)

2010 8 3.5 2.5 7 e10 720 1.2 - 0.1 (0.1) 0.1 (0.1)
2011 9 3.5 2.5 9 e10 720 1.2 0.1 1.0 (1.0) 1.1 (1.1)
2012

2013 6 6.5 1 9 e10 720 9 0.45 2.7 (2) 3.8 (3.1)

2014 9 6.5 1 9 e10 1404 17 0.6 5.3 (2) 9.1 (5.1)



General Strategy 
Measure experimental observables 
sensitive to New Particles through their 
interference effects in processes mediated 
by loop diagrams, e.g.

CP violation via mixing

Example
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CP Asymmetry in BS→J/ψ φ
Just as Bo→J/ψ KS measures CPV phase 2β
BS→J/ψ φ  measures CPV BS mixing phase -2βS
Since this is a Vector-Vector 
final state, must do an angular
(transversity) analysis
The width difference ΔΓS/ΓS
also enters in the fit
Combined current CDF & D0
results
LHCb will get 131,000 such
events in 2 fb-1. Projected errors                                    
are ±0.03 rad in 2βS & ±0.013 in
ΔΓS/ΓS. [Will also use J/ψ fo(980)]

±1σ LHCb in 2 fb-1



βS Using BS→J/ψ f0(980) 
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Ds→K+K-π+

Problem with J/ψ φ: S-wave
Stone & Zhang estimate 10%,                         
can be dealt with, but increases                  
complexity and error (arXiv:0812.2832)

CLEO also measures

Estimate: B(Bs→J/ψ fo→J/ψ π+π−)/B(Bs→J/ψ φ→
J/ψ K+K-) =20-40% [Note M(Bs)-M(J/ψ)≈M(Ds)]
This is a CP Eigenstate, so can get independent 
measurement of somewhat worse accuracy

M(K+K-)

http://xxx.lanl.gov/abs/0812.2832


CLEO Data arXiv:0907.3201
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Ds→f0e+ν                         Ds→φe+ν

http://xxx.lanl.gov/abs/0907.3201


BS→φγ: Right-Handed currents
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Define                           , zero in SM
Theory

where AΔ=sin2ψ
Sensitivity (assume ΔΓS/ΓS=0.12)
σ(sin2ψ)=0.22 2fb-1

σ(sin2ψ)=0.10 10fb-1

σ(sin2ψ)=0.02 100fb-1
AΔ=0

AΔ=0.4
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BS→μ+μ− & Supersymmetry
Branching Ratio very 
sensitive to SUSY
In MSSM goes as tan6β

Gaugino mass

SM



BS→μ+μ−

With 10 fb-1 barely able to make significant 
SM level measurement
Precision measurement requires 100 fb-1
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5σ measurement

3σ measurement

CDF+D0 expected
9 fb-1



B→K*μ+μ−

Standard Model:

Supersymmetry:
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B→K*μμ
Described by three angles                               
(θl, φ, θK) and di-μ invariant                              
mass q2

Forward-backward asymmetry                         
AFB of θl distribution of particular interest:

– Varies between different NP models → 
– At AFB = 0,  the dominant theoretical 

uncertainty.from Bd→K* form-factors cancels at 
LO

Univ. of Penn., April 7, 2010 54

( )2 F B
FB

F B

N NA q
N N

−
=

+



B→K*μ+μ-

State-of-the art is recent 
625 fb-1 Belle analysis     ~ 
250 K*ll arXiv:0904.07701

CDF have ~20 events
in 1 fb-1 arXiv:0804.3908

LHCb expects ~750 in 
300 pb-1(with μ+μ- only)
~7k events / 2fb-1 with B/S 
~ 0.2. After 10 fb-1zero of 
AFB located to ±0.28 GeV2 
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Other Angular Variables in K*μ+μ−

Supersymmetry (Egede, et al... arXiv:0807.2589)
Use functions of the transverse polarization 

ξi are form factors

(4)
TA

10 fb-1

model 1

With more ∫L can distinguish between
different SUSY models in some cases



Exotic Searches
LHCb complements the ATLAS/CMS solid 
angle by concentrating at large η and low pt

Sensitive to “Exotic” particles decaying into 
lepton or quark jets, especially with lifetimes 
in the range of 500>τ>1 ps.
We will show one example, that of “Hidden 
Valley” Higgs decay
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Search for Hidden Valleys
New heavy Gauge sectors can augment the 
Standard Model (SM) as well SUSY etc..
These sectors arise naturally in String theory
It takes Energy to                                       
excite them
They couple to SM                                        
via Z′ or heavy                                      
particle loops
From Strassler &                                            
Zurek [hep-ph/604261]
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Search for Exotic Higgs Decays
Recall tension between 
predicted SM Higgs mass 
using Electroweak data & 
direct LEP limit
Limit is based on SM 
decays, would be void if 
there were other modes
Hidden Valley provides 
new scalars πo

v, allowing 
Ho→ πo

v πo
v → bb, with 

long lifetimes possible.
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Mass Resolutions

Univ. of Penn., April 7, 2010 60

Expect a few thousand reconstructed decays in 2 fb-1



The LHCb Upgrade
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How We Can Upgrade
Run at higher luminosity
Improve efficiencies

especially for hadron trigger
Photon detection
Tracking, e.g. reduce material

Improve resolutions
Photon detector
RICH

Basically build a better magnifying glass!
New VELO, etc…
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Current Trigger Efficiency
As usual define trigger ε= # events accepted 
by trigger / # of events found after all other 
analysis cuts
L0 typically is 50%                                
efficient on fully                                    
hadronic final states
HLT1 is 60% on DSK-

HLT2 is 85% on DSK-

Product is 25%, room for improvement 
L0

 e
ffi

ci
en

cy
 (%

)
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Our Goal
To collect signal at >10 times current rate, 
then we will possess the most powerful 
microscope known to man to probe certain 
physical processes

We will use specific channels and show rates 
can be increased, but the idea is to be able to 
increase data on a whole host of channels 
where new ones may become important

We are taking into account possible 
changes due to the LHC schedule…
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Current Running Conditions
Luminosity 2x1032 cm-2/s at beginning of run
Take σ = 60 mb, [σ(total) - σ(elastic) - σ(diffractive)]
Account for only 29.5 MHz of two filled bunches
Most xings don’t have                                          
an interaction
Need 1st level trigger                                            
“L0” to reduce data by                                          
factor~30 to 1 MHz
Higher Level Triggers                                          
reduce output to 2 kHz

Fr
ac

tio
n
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Upgrade Running Conditions
First step run to 1033

increases average # of 
int/crossing to only ~2.3
Second step to 2x1033

increases to ~4.6
Trigger change: will 
readout entire detector 
each crossing & use 
software to select up to 
20 kHz of events

66

Fr
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One Ex: LHCb Sensitivities for 2βS

With 100 fb-1 (LHCb upgrade) error in -2βS
decreases to ±0.004 (only L
improvement), useful to distinguish among 
Supersymmetry (or other) models (see 
Okada slide), where the differences are on 
the order of ~0.02
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0.3 fb-1 2.0 fb-1 10 fb-1 100 fb-1

Error in -2βs ±0.08 ±0.03 ±0.013 ±0.004
#σ wrt SM 
value: -.0368

0.5 1.3 2.8 8.8



4th Generation Model
New heavy t′ quark
Changes many rates 
& CPV in many 
modes
Ex.
Soni et al 
arXiv:1002.0595
Likely to need 100 fb-1

to distinguish among 
models 
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B(
B

s→
μ+ μ

− )
2βs

SM Prediction

mt′=600 GeV

mt′=400
GeV

http://xxx.lanl.gov/abs/1002.0595


Conclusions
We hope to see the 
effects of new 
particles observed by 
ATLAS & CMS in 
“flavor” variables in 10 
fb-1

Upgrading will allow 
us to precisely 
measure these effects

Upgraded Sensitivities (100 fb-1)
Observable Sensitivity
CPV(Bs→φφ) 0.01-0.02
CPV(Bd→φKs) 0.025-0.035
CPV(Bs→J/ψφ)  (2βs) 0.003
CPV(Bd→J/ψKs) (2β) 0.003-0.010
CPV(B→DK)  (γ) <1o

CPV(Bs→DsK)  (γ) 1-2o

B(Bs→μ+μ−) 5-10% of SM
AFB(B→K*μ+μ−) Zero to ±0.07 GeV2

CPV(Bs→φγ) 0.016-0.025
Charm mixing x′2 2x10-5

Charm mixing y′ 2.8x10-4

Charm CP yCP 1.5x10-4
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The Future
Yogi Berra: “Its difficult to make             
predictions, especially about the future”
Possibilities:

Fourth possibility too depressing to list, but 
LHCb measurements could set the scale of 
where we would have to go next
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LHCb Expectations 300 pb-1

Upper limit on BS→μ+μ−
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90% C.L. exclusion limits at 8 TeV CM

B
R

(B
s0

μ+
μ-

)  
(x

10
-9

)
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Physics Case for Upgrades
One view: Most major discoveries have been 
not “planned.”

Grape Juice

Left
undisturbed →

Left
undisturbed →

73



Examples of Serendipitous Discoveries
     

Device User date Intended Use Actual use 

Optical 
Telescope Galileo 1608 Navigation Moons of Jupiter

Compound 
Microscope Hooke 1650 Magnification Bacteria, Cells…

Optical 
Telescope Hubble 1929 Nebulae Expanding  

Universe 

Radio  Jansky 1932 Noise Radio galaxies 

Micro-wave Penzias, 
Wilson 1965 Radio-galaxies, noise 3K cosmic 

background  
Super 

Kamiokande Koshiba 1996 Proton Decay   Neutrino 
oscillations 

Spear, BNL Richter, Ting 1974 Hadron production J/ψ 

Tevatron CDF, D0 2007 Find Higgs Boson BS oscillations 
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Trigger Specifications 
Projected online farm is 16,000 cores. Original 
spec was 1 GHz, but now getting 2.8 GHz
For 16,000 processors we have 25 ns *16,000 = 
0.4 ms to make a decision (probably will have 
>10 GHz cores)
We need a trigger strategy that executes in 〈0.4 
ms〉 that is maximally efficient on signal and 
reduces the background to an acceptable level

Minimum bias must be reduced from 100 MHz 
interaction rate to <10 kHz, reduction factor is 100,000 
to get 1 kHz background rate (~same as now)
We specify εtrig>50% on hadronic events, but aim 
higher
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Complementarity with ATLAS/CMS
We are sensitive for                                        
lifetimes shorter than                                         
a few hundred picoseconds

ATLAS/CMS are designing                                
triggers to see these                                       
decays if they occur in their calorimeters or 
muon system, sensitive to much longer 
lifetimes. See S. Giagu “Search for long-lived 
particles in ATLAS and CMS,“  arXiv:0810.1453v1 
[hep-ex].
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Higgs Studies
Many different kinds of exotic decays 
possible, but we have studied only two so far
We know Ho production cross-section as 
function of Ho mass, e.g. gg → Ho is 30 pb for 
m(H)=120 GeV at 14 TeV
We must show

Efficient triggering
Efficient b-jet and mass reconstruction
Sensitivity to short & long lifetimes of the πo

v or 
other intermediate objects
Background rejection, e.g. 4b σ is 5.5 μb
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Hardware & 1st Level Trigger
L0 is hardware 
trigger, uses 
calorimeters & μ
HLT1 is 1st level 
software
Efficiencies are 
quite high, as 
expected
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Higher Level Trigger
More software cuts. Also high efficiency 

Also reduces 4b background to a negligible 
level, since the energies of the b’s are much 
lower
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D(hh)K   ~ 2k

D(*)(KShh)K(*) ~ 2k

Totals

D(hh)K
D(KSππ)K
Dπ
DsK

4.8k
340
80k
450

LHCb expectations with 100 pb-1

(but including no HLT, and
assuming 14 TeV xsec)

Current experimental status in key channels:

γ from trees
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The Enigma of Baryogenesis
When the Universe began, the Big Bang, there 
was an equal amount of matter & antimatter
Now we have most matter. How did it happen?
Sakharov criteria

Baryon (B) number violation
Departure from thermal equilibrium
C & CP violation

C is charge conjugation invariance (particle – antiparticle)
P is mirror reflection P[ψ(r)]=±ψ(-r)
So one way of viewing CP violation is left-handed 
particles behave differently than right-handed anti-
particles
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Physical Evidence for CP Violation
Ko→π+π−

Ko→π+π−

0

00

0KA
K

( Kt)
K +

−
=

For B’s 
measure 
Δt 
between 
Bo & Bo

decay in 
e+e-→BoBo

CPLEAR
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Sakharov Criteria All Satisfied
B is violated in Electroweak theory at high 
temperature, B-L is conserved (need quantum 
tunneling, powerfully suppressed at low T)
Non-thermal equilibrium is provided by 
electroweak phase transition
C & CP are violated by weak interactions.
However the violation is too small!

(nB-nB)/nγ = ~6x10-10, while SM can provide only    
~10-20

Therefore, there must be new physics
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Hierarchy Problem
We don’t understand how we get from 
the Planck scale of Energy ~1019 GeV
to the Electroweak Scale ~100 GeV
without “fine tuning” quantum 
corrections
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General Justification for Flavor Physics

Expect New Physics will be seen at LHC
Standard Model is violated by the Baryon 
Asymmetry of Universe & by Dark Matter
Hierarchy problem (why MHiggs<<MPlanck)

However, it will be difficult to characterize this 
physics 
How the new particles interfere virtually in the 
decays of b’s (& c’s) with W’s & Z’s can tell 
us a great deal about their nature, especially 
their phases 
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B Decay Diagrams
a) is largest 
“tree” level 
diagram
e) & f) 
contain 
“loops,” 
other 
intermediate 
particles 
could 
contribute

e, µ,  

νb
W-

q c or u
q

τu  c

d  s
,

a) simple spectator

b
W-

q

c or u

q

u  c
d  s

,

b) hadronic: color suppressed

b W-

u

, u, c-

, d, sν
c) annihilation

b

d

d

b
W- W-

u,c,t

u,c,t

e) box: mixing

b
W-

s,d

γ

t,c,u

,g
f) Penguin

,

b

d

c or u

u
W-

d) W exchange

b

s tt

W+
b

sb

s t,c,u t,c,uW-
b

s
x

x
~ ~

~

W-~

H +~
2
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Flavor in the Standard Model
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Conclusions
While much has been learned about flavor in the 
last decades, even more questions have been 
raised including:

Why 3 families? 
What is the relationship between quark mixing & neutrino 
mixing
Why haven’t we seen the affects of new heavy particles?

Flavor decays are an essential way of establishing 
the identities of anything new that is found
Congratulations to Kobayashi & Maskawa for their 
Noble Prize! 
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The Standard Model
Theoretical Background

Physical States in the Standard Model

The gauge bosons: W±, γ & Zo and the Higgs Ho

Lagrangian for charged current weak decays

Where

,...... , , , , ,R R R R R R
L L L

u c t
u d c s t b

d s b
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

†

2
..cccc hJgL W cμ

μ= − +

( ) ( ), , , ,
L L

e L L L L L

L

MNS C

L

c KMc

e d
u c t sJ V

b
Vμ μ

μ
μ

τν ν ν γ μ γ
τ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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The CKM Matrix

Unitary with 9*2 numbers → 4 independent 
parameters
Many ways to write down matrix in terms of 
these  parameters

ud us ub

cd cs cC b

td ts tb

KM

V V V
= V V V

V V V
V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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The Unitarity Triangle
From unitarity: VudVub*+VcdVcb*+VtdVtb*=0
Divide by VcdVcb* to get a triangle in the 
complex plane whose base is 1

All side & ∠
measurements can be 
expressed as functions 
of  ρ & η

ub

cb

V
V

≈

1 td

ts

V
Vλ

≈
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The Role of QCD
Interpreting fundamental quark decays 
requires theories or models than relate 
quarks to hadrons in which they live and die
In some measurements the QCD effects 
cancel completely, in others QCD accounts 
for small corrections, and yet in others it is 
the dominant error
Some experimental studies in b & c decays 
serve to check the theory
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Existing Constraints on ρ & η
Consider Vub/Vcb =λ(ρ+iη),                            
we measure the ratio of rates 
b→ulν/b→clν ∝
|Vub/Vcb|2 =λ2(ρ2+η2), a circle

Unfortunately, there are theoretical errors due to 
the fact that the b quark is paired with a light 
quark in the B meson, so error on |Vub/Vcb| is ~ 5-
10% & is fiercely debated

Another important ratio is |Vtd/Vts| which is 
related to the ratio of the frequency of Bo/BS
mixing. The dominant error here also is theoretical 

b
W-

q c or u
q

e, µ,  
ν

τVcb or Vub
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More on Bo Mixing
Bo mixing measured by ARGUS                    
in 1987
Δm=0.507±0.004 ps-1

(current world avg)

P(t)~1+cos(Δm•t)
P

(t)
=U

nm
ix

ed
-M

ix
ed

U
nm

ix
ed

+M
ix

ed
What we are 
interested in
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More on BS Mixing
Measured by CDF in 2006

Note

a circle in the ρ−η plane centered at (1,0) 
Glasgow University, Oct. 8, 2008

P(t)~1+cos(Δms•t). A=1 is signal, A=0 elsewhere

( )
2

2 2
21

s s s s

td B B B B

t B B Bs B

V B f m
V B f m

τλ ρ η λ
τ

= − + =
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Lattice QCD & Determination of fB

96

Background
cocktail

τν, τ→πν

π+πο

μν
Koπ

CLEO: e+e-→D-D+Cannot measure fBo & fBs

We can measure fD+ & fDs

fD+ CLEO results 
fD+=(205.8±8.5±2.5) MeV
Calculation of Follana et al 
208±4 MeV
Excellent agreement!

gluons

Vcd

(s)

or cs
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Problem with fDs?
Weighted Average CLEO + Belle: 
fDs=270.4±7.3±3.7  MeV
Follana et al: 241±3 Mev
May be a problem here, but errors still 
large
In any case take fBs=268±17±20 MeV & 
fBs/fB=1.20±2±5 from average of several 
results (see Tantalo hep-ph/0703241)
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Angles: Use CP in Bo Decays
For CPV we interfere two decay                          
amplitudes, one the direct decay                           
and the decay via mixing. 
Consider what happens if Bo→f 
and Bo →f, with f = f
The mixing amplitude for Bd
generates an asymmetry 
~sin(2β), where               
sin(2β)=−2(1−ρ)η/[(1−ρ)2+η2]

Asymmetry means o o

o o
Γ(B f)-Γ(B f)
Γ(B f)+Γ(B f)

a → →
≡

→ →

Bo

Bo

f



CP in Decay
Must also consider effect of                     
CKM matrix elements in                        
specific decay channel
For Bo→J/ψ KS, this phase = 0, since the 
decay proceeds via Vcb & Vcs

The result is 

b

W-

c 

}

ψ

 K
s

}
d

d s

c 
Vcb

Vcs

( ) sin(2 )sin( )fa t mtβ= − Δ
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What we don’t know about 
Flavor

Glasgow University, Oct. 8, 2008 100Univ. of Penn., April 7, 2010



Flavor as tool for understanding 
NP

Future Experiments

Glasgow University, Oct. 8, 2008 101Univ. of Penn., April 7, 2010



B Experiments
Recently 
Completed

CLEO
BABAR
BELLE

Ongoing
CDF (BS)

D0    (BS)

New
LHCb (BS)

BELLE Upgrade
Proposed

Super B (at 
Frascati) & 
higher lumi Belle 
Upgrade
LHCb Upgrade 
(BS)

Glasgow University, Oct. 8, 2008 102Univ. of Penn., April 7, 2010
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Little Higgs Model with T Parity
There exist regions of parameter space consistent with 
measurement where large φS is predicted & ΔMS is found 
somewhat smaller than in the SM. 
In particular, significant enhancement of φS &  the 
semileptonic asymmetry ASL

(S) relative to the SM are 
found

φS

•From Blanke & Buras,
[hep-ph/0703117]

SM
LHTNeed precision 

measurements of CP 
asymmetry in BS→J/ψφ & 
B(BS→DS

+l-ν)- B(BS→DS
-

l+ν)

103



Current Status
Combined data 
are 2.4σ from 
SM prediction
We shall see…
From Jérôme 
Charles, Capri, 
June 2008
Similar results 
from UTfit, 
Silverstrini 
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Physics Goals of B Decay Studies
Discover, or help interpret, New Physics 
found elsewhere - There is New Physics out 
there: Standard Model is violated by the 
Baryon Asymmetry of Universe & by Dark 
Matter
Measure Standard Model parameters, the 
“fundamental constants” revealed to us by 
studying Weak interactions
Understand QCD; necessary to interpret 
CKM measurements. 
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CP violation using CP eigenstates
CP asymmetry

for q/p = 1

When there is only one decay amplitude, λ=1 
then
Time integrated

( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )

o o

f o o

B t f B t f
a t

B t f B t f

Γ → − Γ →
=

Γ → + Γ →

( )2

2

1 cos( ) 2 Im sin( )
( )

1
f

mt mt
a t

λ λ

λ

− Δ − Δ
=

+

( ) Im sin( )fa t mtλ= − Δ

2( ) Im 0.48Im
1f

xa t
x

λ λ= − = −
+

good luck, maximum is –0.5
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CP violation using CP eigenstates II

For Bd,

Now need to add A/A
for J/ψ Ks:

( ) ( )
( )

2 2*
tb td -2i

2*
tb t

β

d

V V 1-ρ-iηq = = =e
p 1-ρ+iη (1-ρ-iη)V V

( )2 2

p 2(1-ρ)ηIm = =sin(2 )
q

β
1-ρ +η

⎛ ⎞
⎜ ⎟
⎝ ⎠

b

W-

c 

}

ψ

 K
s

}
d

d s

c ( )2*
cb cs

2*
cb cs

V VA = 1
A V V

=

η

ρ

β
0 1
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CDF & D0 May See Something

From Jérôme Charles, Capri, June 2008
Similar results from UTfit, Silverstrini 
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5σ discovery

3σ observation,
90% probability
Range from MC
statistics

Current CDF Limit
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LHCb Reach for B(BS→μ+μ−)

Observation by LHCb expected in 10 fb-1, but 100 fb-1 needed for 
precise measurement



Direct Hidden Valley Production
Here we excite a virtual                                 
Z′, or other heavy object,                              
that decays in multiple pv
L0 & HLT1 efficiencies                                 
are large
Higher Level

Overall efficiency reasonably high, but we 
don’t know production cross-section
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Okada Models Summary
Possible deviations from the SM prediction

Bd -
unitarity
Triangle 
test

T-dep CPV 
in B→φKs, 
B->K*γ

b→sγ
direct CP

T-dep CPV
in BS→J/ψφ

LFV

mSUGRA - - - - -
SU(5)SUSY 
GUT + νR
(degenerate)

_ _ _ _ μ→eγ

SU(5)SUSY 
GUT + νR
(non-degenerate)

_ <~0.05 _ <~0.05 μ→eγ
τ→μγ

U(2) Flavor 
symmetry

< a 
few %

<~0.05 < a 
few %

<~0.05 μ→eγ
τ→μγ
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