NEW RESULTS FROM MINOS

Patricia Vahle, College of William and Mary

- Review of neutrino oscillations
- The MINOS experiment and results
 - Muon neutrino disappearance
 - NC event rate
 - Electron neutrino appearance
 - Muon antineutrino disappearance
- The NOvA experiment

$$\begin{bmatrix} \mathbf{v}_{\mathrm{e}} \\ \mathbf{v}_{\mathrm{\mu}} \\ \mathbf{v}_{\mathrm{\tau}} \end{bmatrix} = \mathbf{U}^{\dagger} \begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{bmatrix}$$

- Neutrinos have mass
- $v_e, v_\mu, v_\tau \leftrightarrow v_1, v_2, v_3$
 - Flavor states—creation and detection
 - Mass states—propagation
- Neutrinos born as one flavor can later be detected as another flavor
- PMNS matrix relates the two bases

$$P(V_{\alpha} \to V_{\alpha}) = \left| \sum_{j} U_{\alpha j}^{*} e^{-i \frac{m_{j}^{2} L}{2E}} U_{\alpha j} \right|^{2}$$

- Neutrinos have mass
- $v_e, v_\mu, v_\tau \leftrightarrow v_1, v_2, v_3$
 - Flavor states—creation and detection
 - Mass states—propagation
- Neutrinos born as one flavor can later be detected as another flavor
- PMNS matrix relates the two bases

- Flavor states—creation and detection
- Mass states—propagation
- Neutrinos born as one flavor can later be detected as another flavor
- PMNS matrix relates the two bases

Pontecorvo, Maki, Nakagawa, Sakata

P. Vahle, Penn. Dec. 2010

6

$$\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

□ Factorizes—3 terms, 3 experimental regimes

 $\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Factorizes—3 terms, 3 experimental regimes

- □ (12) Sector identified with solar mixing
 - **driven by small** $\Delta m^2 \sim 8 \times 10^{-5} \text{ eV}^2$
 - Reactor+Solar experiments at L/E~15,000 km/GeV

- $\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 - Factorizes—3 terms, 3 experimental regimes
 - □ (23) Sector identified with atmospheric mixing
 driven by larger Δm²~2x10⁻³ eV²
 - Atmospheric neutrinos
 - accelerator experiments with L/E~500 km/GeV

- $\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 - Factorizes—3 terms, 3 experimental regimes
 - □ (13) Sector mixing not yet observed
 - \bullet θ_{13} is small
 - accelerator experiments L/E~500 km/GeV
 - reactor experiments L/E~500 km/GeV (0.5 km/MeV)

Why measure all these angles?

- Precision measurements provide valuable check that neutrino oscillations are the right solution to neutrino anomalies
- PMNS matrix analogous to CKM matrix governing quark mixing
 - mixing in lepton sector much larger than mixing in quark sector
 - \blacksquare θ_{23} maximal? θ_{12} moderately large—why?
 - $\blacksquare \theta_{13}$ small, is it zero?—why?

10

Is there CP violation in the lepton sector? Is it big enough to account for matter vs. antimatter asymmetry in the Universe?

The MINOS Experiment

12

P. Vahle, Penn. Dec. 2010

 $\overline{\mathbf{v}}_{\mu}$

 ν_{τ}

 $\overline{\nu_{e}}$

15

Measure V_µ disappearance as a function of energy

- $\Box \ \overline{\Delta m^2}_{32} \text{ and } \sin^2(\overline{2\theta}_{23})$
- Iook for differences between neutrino and anti-neutrinos

The Detectors

Magnetized, tracking calorimeters

Salar Deres

1 kt **Near Detector** measure beam before oscillations 5.4 kt Far Detector look for changes in the beam relative to the Near Detector

735 km from source

1 km from source

- Tracking sampling calorimeters
 steel absorber 2.54 cm thick (1.4 X₀)
 - scintillator strips 4.1 cm wide
 - (1.1 Moliere radii)
 - I GeV muons penetrate 28 layers
- Magnetized
 - muon energy from range/curvature
 - **distinguish** μ^+ from μ^-
- Functionally equivalent
 - same segmentation
 - same materials
 - same mean B field (1.3 T)

Production

19

bombard graphite target with 120 GeV p⁺ from Main Injector

- 2 interaction lengths
- 310 kW typical power
- **□** produce hadrons, mostly **π** and K

Focusing

20

- hadrons focused by 2 magnetic focusing horns
- energy of focused particles depends on separation between target and horns
- sign selected hadrons
 - forward current, (+) for standard neutrino beam runs
 - reverse current, (–) for anti-neutrino beam

P. Vahle, Penn. Dec. 2010

Decay

- 2 m diameter decay pipe
- result: wide band neutrino beam
- secondary beam monitored

Events in MINOS

Simulated Events

- \Box V_u Charged Current events:
 - \blacksquare long μ track, with hadronic activity at vertex
 - neutrino energy from sum of muon energy (range or curvature) and shower energy

Events in MINOS

- Neutral Current events:
 - short, diffuse shower event
 - shower energy from calorimetric response

Events in MINOS

24

□ V_e Charged Current events:

- compact shower event with an EM core
- neutrino energy from calorimetric response

Near to Far

25

Far spectrum without oscillations is similar, but not identical to the Near spectrum!

- Neutrino energy depends on angle wrt original pion direction and parent energy
 - higher energy pions decay further along decay pipe
 - angular distributions different between Near and Far

Near to Far

26

Far spectrum without oscillations is similar, but not identical to the Near spectrum!

Extrapolation

- Muon-neutrino and anti-neutrino analyses: beam matrix for FD prediction of track events
- NC and electron-neutrino analyses: Far to Near spectrum ratio for FD prediction of shower events

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 \left(2\theta\right) \sin^2 \left(1.27\Delta m^2 L / E\right)$$

Monte Carlo

28

(Input parameters: $\sin^2 2\theta = 1.0$, $\Delta m^2 = 3.35 \times 10^{-3} \text{ eV}^2$)

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2\left(2\theta\right)\sin^2\left(1.27\Delta m^2 L / E\right)$$

Monte Carlo

29

(Input parameters: $\sin^2 2\theta = 1.0$, $\Delta m^2 = 3.35 \times 10^{-3} \text{ eV}^2$)

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2(2\theta) \sin^2(1.27\Delta m^2 L / E)$$

Monte Carlo

30

(Input parameters: $\sin^2 2\theta = 1.0$, $\Delta m^2 = 3.35 \times 10^{-3} \text{ eV}^2$)

CC events in the Near Detector

Far Detector Energy Spectrum

No Oscillations: 2451 Observation: 1986

Far Detector Energy Spectrum

□Pure decoherence[†] disfavored: > 80
 □Pure decay[‡] disfavored: > 60

(7.80 if NC events included)

[†]G.L. Fogli et al., PRD 67:093006 (2003) [‡]V. Barger et al., PRL 82:2640 (1999)

P. Vahle, Penn. Dec. 2010

track energy

P. Vahle, Penn. Dec. 2010

Neutral Current Near Event Rates

- Neutral Current event rate should not change in standard 3 flavor oscillations
- A deficit in the Far event rate could indicate mixing to sterile neutrinos
- V_e CC events would be included in NC sample, results depend on the possibility of V_e appearance

Neutral Currents in the Far Detector

36

 $f_s \equiv \frac{P_{\nu_{\mu} \rightarrow \nu_s}}{1 - P_{\nu_{\mu} \rightarrow \nu_{\mu}}} < 0.22 \quad (0.40) \text{ at } 90\% \text{ C.L.}$ no (with) ν_e appearance

P. Vahle, Penn. Dec. 2010

37

A few percent of the missing V_μ could change into V_e depending on value of θ₁₃
 Appearance probability additionally depends on δ_{CP} and mass hierarchy

Looking for electron-neutrinos

11 shape variables in a Neural Net (ANN)

38

characterize longitudinal and transverse energy deposition

□ Apply selection to ND data to predict background level in FD

NC, CC, beam V_e each extrapolates differently

take advantage of NuMI flexibility to separate background components

P. Vahle, Penn. Dec. 2010

Measuring the Background

- Turn off the focusing horns—Resulting spectrum is dominated by NC events
- Use ND data in two different configurations to extract relative components of background

40

□ Based on ND data, expect: **49.1±7.0(stat.)±2.7(syst.)**

P. Vahle, Penn. Dec. 2010

Based on ND data, expect: 49.1±7.0(stat.)±2.7(syst.)
 Observe: 54 events in the FD, a 0.7σ excess

Phys.Rev. D82 (2010) 051102
20
Amr² > 0

$$\Delta m^2 > 0$$

 $\Delta m^2 > 0$
 $\Delta m^2 < 0$
 $\Delta m^2 > 0$
 $\Delta m^2 > 0$
 $\Delta m^2 > 0$
 $\Delta m^2 > 0$

_ \

P. Vahle, Penn. Dec. 2010

Making an anti-neutrino beam

Making an anti-neutrino beam

ND Anti-neutrino Data

Focus and select positive muons

- purity 94.3% after charge sign cut
- □ purity 98% < 6GeV
- Analysis proceeds as (2008) neutrino analysis
- Data/MC agreement comparable to neutrino running
 - different average kinematic distributions
 - more forward muons

ND Data

FD Data

47

 No oscillation Prediction: 155
 Observe: 97
 No oscillations disfavored at 6.3σ

FD Data

FD Data

Comparisons to Neutrinos

Comparisons to Neutrinos

51

P. Vahle, Penn. Dec. 2010

NOvA

52

2 detector, 810 km baseline off-axis neutrino experiment in upgraded NuMI beam line
 Search for v_µ → v_e oscillations with an order of magnitude more sensitivity than MINOS

Chicago

Wisconsin The particle accelerators at Fermilab

MINOS Far Detector

NOvA Far Detector

Detector Site in Ash River

53

Physics goals:

- \blacksquare Measurement of θ_{13}
- Determining the ordering of mass hierarchy

- Big Detector
 - 18 kton
- Higher beam power
- Off Axis design
 - narrow band beam peaked at oscillation max
 - fewer feed down event from high energy NCs
- Improved signal/BG discrimination
- Improved knowledge of cross sections for backgrounds

NOvA Near Detector (on the surface)

55

Vahle, Penn. Dec. 2010

(real) Cosmics in NOvA

(real) Cosmics in NOvA

- Far Detector building under construction
 - Beneficial occupancy, March 2011
 - Half detector ready, Mid 2012
 - Full FD, Fall 2013
- Beam Upgrades, March 2012
 - Recycler/Main Injector upgrades
 —decrease cycle time, increase intensity 700kW
 - new NuMI horns and target
 - Reconfigure NuMl for ME beam

Summary

59

- With 7x10²⁰ POT of neutrino beam, MINOS finds
 - muon-neutrinos disappear

 $\left|\Delta m^2\right| = 2.35^{+0.11}_{-0.08} \times 10^{-3} \,\mathrm{eV}^2,$ $\sin^2(2\theta) > 0.91 \,(90\% \,\mathrm{C.L.})$

NC event rate is not diminished

 $f_s < 0.22(0.40)$ at 90% C.L.

 electron-neutrino appearance is limited

 $\sin^2(2\theta_{13}) < 0.12 (0.20)$ at 90% C.L.

With 1.71x10²⁰ POT of antineutrino beam

> muon anti-neutrinos also disappear with

$$\left|\overline{\Delta m^2}\right| = 3.36^{+0.45}_{-0.40} \times 10^{-3} \,\mathrm{eV^2},$$

 $\sin^2(2\overline{\theta}) = 0.86 \pm 0.11$

- we look forward to more antineutrino beam!
- □ NOvA is on the horizon
 - Construction of FD underway
 - ND taking data!

Backup Slides

Beam Performance

61

Started data taking 2005

1x10²¹ POT milestone achieved Summer 2010

Beam Performance

- □ 7x10²⁰ POT low energy neutrino mode
- □ 1.71x10²⁰ POT antineutrino mode

Neutrino Spectrum

63

Use flexibility of beam line to constrain hadron production, reduce uncertainties due to neutrino flux

Far/Near differences

- $\Box V_{\mu}$ CC events oscillate away
- Event topology

64

- Light level differences (differences in fiber lengths)
- Multiplexing in Far (8 fibers per PMT pixel)
- Single ended readout in Near
- □PMTs (M64 in Near Detector, M16 in Far):
 - Different gains/front end electronics
 - Different crosstalk patterns
- □Neutrino intensity
- Relative energy calibration/energy resolution

Account for these lower order effects using detailed detector simulation

Analysis Improvements

- □ Since PRL 101:131802, 2008
- Additional data

- □ $3.4 \times 10^{20} \rightarrow 7.2 \times 10^{20} \text{ POT}$
- Analysis improvements
 - updated reconstruction and simulation
 - new selection with increased efficiency
 - no charge sign cut
 - improved shower energy resolution
 - separate fits in bins of energy resolution
 - smaller systematic uncertainties

New Muon-neutrino CC Selection

Shower Energy Resolution

67

MINOS Preliminary

Energy Resolution Binning

CC Systematic Uncertainties

69

P. Vahle, Penn. Dec. 2010

Resolution Binning

Rock and Anti-fiducial Events

- Neutrinos interact in rock around detector and outside of Fiducial Region
- These events double sample size, events have poorer energy resolution

MINOS Preliminary

P. Vahle, Penn. Dec. 2010

72

MINOS Preliminary

 $\left|\Delta m^2\right| = 2.35^{+0.11}_{-0.08} \times 10^{-3} \,\mathrm{eV}^2$ $\sin^2(2\theta) > 0.91 (90\% \text{ C.L.})$

- Contour includes effects of dominant systematic uncertainties
 - normalization
 - NC background
 - shower energy
 - track energy

Contours by Run Period

73

Fits to NC

74

Fit CC/NC spectra simultaneously with a 4th (sterile) neutrino \square 2 choices for 4th mass eigenvalue $\square m_{4} >> m_{3}$ $\square m_4 = m_1$

Electron-neutrino Background Decomposition

75

Electron-neutrino Systematics

MRCC Background Rejection Check

Remove muons, test BG rejection on shower remnants

Mis-id rate:
□pred (6.42±0.05)%
□data (7.2±0.9)%
(stats error only)
□Compatible at 0.86 σ

Checking Signal Efficiency

 Test beam measurements demonstrate electrons are well simulated

78

Checking Signal Efficiency

79

Check electron neutrino selection efficiency by removing muons, add a simulated electron

P. Vahle, Penn. Dec. 2010

Making an antineutrino beam

80

Hadron production and cross sections conspire to change the shape and normalization of energy spectrum

~3x fewer antineutrinos for the same exposure

z position (m)

Anti-neutrino Selection

Anti-neutrino Systematics

FD Anti-neutrino Data

83

Vertices uniformly distributed

Track ends clustered around coil hole

Previous Anti-neutrino Results

84

Results consistent with (less sensitive) analysis of anti-neutrinos in the neutrino beam
anti-neutrinos from unfocused beam component
mostly high energy antineutrinos

 Analysis of larger exposure on going

Future Anti-neutrino Sensitivity

85

MINOS Physics Goals

86

Measure V_{μ} disappearance as a function of energy $\Box \Delta m^2_{32}$ and $\sin^2(\overline{2\theta}_{23})$ Iook for differences between neutrino and anti-neutrinos More MINOS analyses: atmospheric neutrinos cross section measurements Lorentz invariance tests

cosmic rays

Atmospheric Neutrinos

87

$$\left| \Delta m^{2} \right| - \left| \overline{\Delta m^{2}} \right| = 0.4^{+0.11}_{-0.10} \pm 0.10$$
$$\left| \Delta m^{2} \right| - \left| \overline{\Delta m^{2}} \right| = 0.4^{+2.5}_{-1.2} \times 10^{-3} \,\mathrm{eV^{2}}$$