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  Review of neutrino oscillations 
  The MINOS experiment and results 

 Muon neutrino disappearance 
 NC event rate 
 Electron neutrino appearance 
 Muon antineutrino disappearance 

  The NOvA experiment 



Mixing Matrix 

•  Neutrinos have mass 
•  νe, νµ, ντ↔ν1, ν2, ν3 
•  Flavor states—creation and detection 
•  Mass states—propagation    

•  Neutrinos born as one flavor can later be 
detected as another flavor 

•  PMNS matrix relates the two bases 
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Mixing Matrix 

U =
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×diag(1,eiα , eiβ )

•  Neutrinos have mass 
•  νe, νµ, ντ↔ν1, ν2, ν3 
•  Flavor states—creation and detection 
•  Mass states—propagation    

•  Neutrinos born as one flavor can later be 
detected as another flavor 

•  PMNS matrix relates the two bases 

α, β—Majorana 
phases 
not observable in 
oscillation expts. 

Pontecorvo, Maki, 
Nakagawa, Sakata 
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Mixing Matrix 

  Factorizes—3 terms, 3 experimental regimes  
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Mixing Matrix 

  Factorizes—3 terms, 3 experimental regimes 
  (12) Sector identified with solar mixing 

 driven by small Δm2~8x10-5 eV2
 

 Reactor+Solar experiments at L/E~15,000 km/GeV 
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Mixing Matrix 

  Factorizes—3 terms, 3 experimental regimes 
  (23) Sector identified with atmospheric mixing 

 driven by larger Δm2~2x10-3 eV2 

 Atmospheric neutrinos 
 accelerator experiments with L/E~500 km/GeV 
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Mixing Matrix 

  Factorizes—3 terms, 3 experimental regimes 
  (13) Sector mixing not yet observed 

 θ13 is small 
 accelerator experiments L/E~500 km/GeV 
  reactor experiments L/E~500 km/GeV (0.5 km/MeV) 
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Why measure all these angles? 

  Precision measurements provide valuable check that 
neutrino oscillations are the right solution to neutrino 
anomalies  

  PMNS matrix analogous to CKM matrix governing 
quark mixing 
 mixing in lepton sector much larger than mixing in quark 

sector 
  θ23 maximal? θ12 moderately large—why? 
  θ13 small, is it zero?—why? 
  Is there CP violation in the lepton sector? Is it big enough to 

account for matter vs. antimatter asymmetry in the Universe? 
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The MINOS Experiment 
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  Long base-line neutrino oscillation 
experiment 

 Neutrinos from NuMI 
beam line 

 L/E ~ 500 km/GeV 
 atmospheric Δm2


 Two detectors mitigate 
  systematic effects 

 beam flux mis-   
  modeling 
 neutrino interaction  

 uncertainties 

Far Detector 
735 km from Source 

Near Detector 
1 km from Source 



MINOS Physics Goals 
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  Measure νμ  disappearance 
as a function of energy 
   Δm2

32 and sin2(2θ23) 

  test oscillations vs. decay/

decoherence Δm2
32 

Δm2
21 

νµ →νX
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  Measure νμ  disappearance 
as a function of energy 
   Δm2

32 and sin2(2θ23) 

  test oscillations vs. decay/

decoherence 

  Mixing to sterile neutrinos? 

Δm2
32 

Δm2
21 

νµ →νS

Δm2
14 
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Δm2
32 

Δm2
21 

  Measure νμ  disappearance 
as a function of energy 
   Δm2

32 and sin2(2θ23) 

  test oscillations vs. decay/

decoherence 

  Mixing to sterile neutrinos? 
  Study νμ→νe mixing 

 measure θ13


νµ →νe



MINOS Physics Goals 
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  Measure νμ  disappearance 
as a function of energy 
   Δm2

32 and sin2(2θ23) 

  look for differences between 

neutrino and anti-neutrinos Δm2
32 

Δm2
21 

νµ →νX



The Detectors 
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1 kt Near Detector— 
measure beam 
before  
oscillations 

5.4 kt Far Detector— 
look for changes in the beam 
relative to the Near Detector 

Magnetized, tracking calorimeters 

735 km from source 

1 km from source 



Detector Technology 
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Multi-anode PMT 

Extruded 
PS scint. 
4.1 x 1 cm2 

WLS fiber 

Clear 
Fiber cables 

2.54 cm Fe 

U V planes 
+/- 450 

  Tracking sampling calorimeters 
  steel absorber 2.54 cm thick (1.4 X0) 
  scintillator strips 4.1 cm wide  
   (1.1 Moliere radii) 
  1 GeV muons penetrate 28 layers 

  Magnetized 
 muon energy from range/curvature 
 distinguish μ+ from μ-


  Functionally equivalent 
  same segmentation  
  same materials 
  same mean B field (1.3 T) 



Making a neutrino beam 
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Making a neutrino beam 
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  Production 
  bombard graphite target with 120 GeV p+ from Main Injector 

  2 interaction lengths 
  310 kW typical power 

  produce hadrons, mostly π and K 



Making a neutrino beam 
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  Focusing 
  hadrons focused by 2 magnetic focusing horns 
  energy of focused particles depends on separation between 

target and horns 
  sign selected hadrons 

  forward current, (+) for standard neutrino beam runs 
  reverse current, (–) for anti-neutrino beam 



Making a neutrino beam 
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  Decay 
 2 m diameter decay pipe 
  result: wide band neutrino beam 
  secondary beam monitored 



e-


CC νe  Event 


Events in MINOS 

NC Event 

ν 
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  νμ Charged Current events: 
  long μ track, with hadronic activity at vertex 
  neutrino energy from sum of muon energy (range or 

curvature) and shower energy 

CC νμ  Event 


μ-
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νµ + N → µ + X

Simulated Events 
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CC νμ  Event 
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  Neutral Current events: 
  short, diffuse shower event 
  shower energy from calorimetric response 

Simulated Events 
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Events in MINOS 

NC Event 
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CC νμ  Event 
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  νe Charged Current events: 
  compact shower event with an EM core 
  neutrino energy from calorimetric response 

Simulated Events 



Near to Far 
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  Neutrino energy depends on angle wrt original pion 
direction and parent energy 
 higher energy pions decay further along decay pipe 
 angular distributions different between Near and Far  

FD

Decay Pipe


π+

Target


ND


p


Far spectrum without oscillations is similar, but not identical to 
the Near spectrum! 

Eν ≈ 0.43
Eπ

1+ γ 2θν
2



Near to Far 
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Far spectrum without oscillations is similar, but not identical to 
the Near spectrum! 

Eν ≈ 0.43
Eπ

1+ γ 2θν
2



Extrapolation 
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  Muon-neutrino and anti-neutrino analyses: beam matrix for 
FD prediction of track events 

  NC and electron-neutrino analyses: Far to Near spectrum 
ratio for FD prediction of shower events 
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Unoscillated 

Oscillated 

  νμ spectrum


νμ Disappearance 
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P(νµ →νµ ) = 1− sin
2 2θ( )sin2 (1.27Δm2L / E)

spectrum ratio


Monte Carlo

(Input parameters:  sin22θ = 1.0,  Δm2 = 3.35x10-3 eV2 )


Characteristic 
Shape 

Monte Carlo
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  νμ spectrum
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P(νµ →νµ ) = 1− sin
2 2θ( )sin2 (1.27Δm2L / E)

spectrum ratio


Monte Carlo

(Input parameters:  sin22θ = 1.0,  Δm2 = 3.35x10-3 eV2 )


Monte Carlo


sin2(2θ)
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Oscillated 

  νμ spectrum


νμ Disappearance 
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P(νµ →νµ ) = 1− sin
2 2θ( )sin2 (1.27Δm2L / E)

spectrum ratio


Monte Carlo

(Input parameters:  sin22θ = 1.0,  Δm2 = 3.35x10-3 eV2 )


Monte Carlo


Δm2




CC events in the Near Detector 
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  Show ND energy spectrum 
  Majority of data from 

low energy beam 
  High energy beam 

improves statistics in 
energy range above 
oscillation dip 

  Additional exposure in 
other configurations for 
commissioning and 
systematics studies 



Far Detector Energy Spectrum 
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No Oscillations: 2451 

Observation: 1986 



Far Detector Energy Spectrum 
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 Oscillations fit the data well, 66% of experiments have worse χ2 
 Pure decoherence† disfavored:  > 8σ

 Pure decay‡ disfavored:    > 6σ


 
 
 
 
 
 
 
 
(7.8σ if NC events included)


†G.L. Fogli et al., PRD 67:093006 (2003)    ‡V. Barger et al.,PRL 82:2640 (1999) 



Contours 
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  Contour includes effects 
of dominant systematic 
uncertainties 
  normalization 
 NC background 
  shower energy 
  track energy 

Δm2 = 2.35−0.08
+0.11 ×10−3eV2

sin2 (2θ) > 0.91 (90%C.L.)

†Super-Kamiokande Collaboration (preliminary) 

† 



Neutral Current Near Event Rates 
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  Neutral Current event rate 
should not change in 
standard 3 flavor oscillations 

  A deficit in the Far event rate 
could indicate mixing to 
sterile neutrinos 

  νe CC events would be 
included in NC sample, 
results depend on the 
possibility of νe appearance 



Neutral Currents in the Far Detector 
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  Expect:  757 events 

 Observe:  802 events 

 No deficit of NC events 

fs ≡
Pνµ →νs

1− Pνµ →νµ

< 0.22 (0.40) at 90% C.L.
no (with) νe appearance  

R= Ndata − BG
SNC

1.09 ± 0.06 (stat.) ± 0.05 (syst.)
(no νe appearance)

1.01 ± 0.06 (stat.) ± 0.05 (syst.) 
(with νe  appearance)



νe Appearance 
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P(νµ →νe ) ≈ sin
2 (2θ13 )sin

2 (θ23)sin
2 1.27Δm31

2 L
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 A few percent of the missing νμ could change into νe 
depending on value of θ13


 Appearance probability additionally depends on δCP and 
mass hierarchy 

Δm32
2

Δm21
2

Normal Hierarchy Δm32
2

Δm21
2

Inverted Hierarchy 

? 
⇔ 



Looking for electron-neutrinos 
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  11 shape variables in a Neural Net (ANN) 
  characterize longitudinal and transverse energy deposition 

 Apply selection to ND data to predict background level in FD 
 NC, CC, beam νe each extrapolates differently 

  take advantage of  NuMI flexibility to separate background components 

νe 

 selected 
region 

•  Data 
⎯  MC 

BG Region 



Measuring the Background 
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  Turn off the focusing horns—Resulting spectrum is dominated by 
NC events 

 Use ND data in two different configurations to extract relative 
components of background 



νe Appearance Results 
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  Based on ND data, expect: 49.1±7.0(stat.)±2.7(syst.) 



νe Appearance Results 
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  Based on ND data, expect: 49.1±7.0(stat.)±2.7(syst.) 

  Observe:  54 events in the FD, a 0.7σ excess




νe Appearance Results 
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for δCP = 0, sin2 2θ23( ) = 1,

Δm32
2 = 2.43×10−3 eV2

sin2 (2θ13) < 0.12 normal hierarchy
sin2 (2θ13) < 0.20 inverted hierarchy
at 90% C.L.

Phys.Rev. D82 (2010) 051102  

MINOS
7.01×1020 POT



Making an anti-neutrino beam 
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π- 

π+ 

Target
 Focusing Horns


2 m 

675 m


νµ 

νµ 

15 m
 30 m


120 GeV 
p’s from MI


Neutrino mode 
Horns focus π+, K+ 

νμ:  91.7%  
νμ:  7.0% 
νe+νe :  1.3% 
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Making an anti-neutrino beam 
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π- 

π+ 

Target
 Focusing Horns


2 m 

675 m


νµ 

νµ 

15 m
 30 m


120 GeV 
p’s from MI


Anti-neutrino Mode 
Horns focus π-, K- 
enhancing the νμ flux 

Neutrino mode 
Horns focus π+, K+ 

νμ:  39.9%  
νμ:  58.1% 
νe+νe :  2.0% 

Ev
en

ts
 

Ev
en

ts
 

νμ:  91.7%  
νμ:  7.0% 
νe+νe :  1.3% 



ND Anti-neutrino Data 
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 Focus and select positive 
muons 
 purity 94.3% after charge 

sign cut 
 purity 98% < 6GeV 

 Analysis proceeds as (2008) 
neutrino analysis 

 Data/MC agreement 
comparable to neutrino 
running 
 different average kinematic 

distributions 
 more forward muons 



ND Data 
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  Data/MC agreement 
comparable to 
neutrino running 



FD Data 
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  No oscillation 
Prediction: 155 

  Observe:  97 
  No oscillations  

disfavored at 6.3σ




FD Data 
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Δm2 = 3.36−0.40
+0.45 ×10−3eV2

sin2 (2θ) = 0.86 ± 0.11

  No oscillation 
Prediction: 155 

  Observe:  97 
  No oscillations  

disfavored at 6.3σ




FD Data 
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Comparisons to Neutrinos 
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Comparisons to Neutrinos 
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The particle accelerators at 
Fermilab


NOvA 
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Detector Site in Ash River


  2 detector, 810 km baseline off-axis neutrino 
experiment in upgraded NuMI beam line 

  Search for νμ → νe oscillations with an order of 
magnitude more sensitivity than MINOS 



NOvA 
53 

  Physics goals: 
 Measurement of θ13 
 Determining the ordering of mass hierarchy  
 Measure δCP violating phase 



NOvA 

  Big Detector 
  18 kton 

  Higher beam power 
  Off Axis design 

  narrow band beam peaked at 
oscillation max 

  fewer feed down event from 
high energy NCs 

  Improved signal/BG 
discrimination 

  Improved knowledge of cross 
sections for backgrounds 



NOvA Near Detector (on the surface) 
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Power 
Distribution 

DCM 
Front End 

Electronics and 
APDs 

NOvA Near Detector 



(real) Cosmics in NOvA 
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(real) Cosmics in NOvA 
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  Far Detector building under 
construction 
  Beneficial occupancy, March 

2011 
  Half detector ready, Mid 2012 
  Full FD, Fall 2013 

  Beam Upgrades, March 2012 
  Recycler/Main Injector upgrades

—decrease cycle time, increase 
intensity 700kW 

  new NuMI horns and target 
  Reconfigure NuMI for ME beam 

NOvA 



Summary 

P. Vahle, Penn. Dec. 2010 

59 

  With 7x1020 POT of neutrino 
beam, MINOS finds 
  muon-neutrinos disappear 

  NC event rate is not diminished 

  electron-neutrino appearance is 
limited 

  With 1.71x1020 POT of anti-
neutrino beam 
  muon anti-neutrinos also 

disappear with 

  we look forward to more anti-
neutrino beam! 

  NOvA is on the horizon 
  Construction of FD underway 
  ND taking data! 

Δm2 = 2.35−0.08
+0.11 ×10−3eV2,

sin2 (2θ) > 0.91 (90%C.L.)

fs < 0.22(0.40) at 90% C.L.

sin2 (2θ13) < 0.12 (0.20) at 90% C.L.

Δm2 = 3.36−0.40
+0.45 ×10−3eV2,

sin2 (2θ) = 0.86 ± 0.11



Backup Slides 
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Beam Performance 
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  Started data taking 2005 
  1x1021 POT milestone achieved Summer 2010 

Green-LE neutrino running 
Orange-LE antineutrino running 
Red-Special runs, alternate target positions 
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Anti- 
neutrino 
running 

Summer 2010 MINOS Results 

  7x1020 POT low energy neutrino mode 
  1.71x1020 POT antineutrino mode 



LE 10
 ME
 HE


Neutrino Spectrum 
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  Use flexibility of beam line to constrain hadron 
production, reduce uncertainties due to neutrino flux 



Far/Near differences 
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 νμ CC events oscillate away 
 Event topology 

 Light level differences (differences in fiber lengths) 

 Multiplexing in Far (8 fibers per PMT pixel) 

 Single ended readout in Near 

 PMTs (M64 in Near Detector, M16 in Far): 
 Different gains/front end electronics 

 Different crosstalk patterns 

 Neutrino intensity 

 Relative energy calibration/energy resolution 

Account for these lower order effects using detailed detector simulation 



Analysis Improvements 
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  Since PRL 101:131802, 2008 
  Additional data 

  3.4x1020 → 7.2x1020 POT 

  Analysis improvements 
  updated reconstruction and 

simulation 
  new selection with increased 

efficiency 
  no charge sign cut 
  improved shower energy 

resolution 
  separate fits in bins of energy 

resolution 
  smaller systematic 

uncertainties 



New Muon-neutrino CC Selection 
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Shower Energy Resolution 

P. Vahle, Penn. Dec. 2010 

67 



Energy Resolution Binning 
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CC Systematic Uncertainties 
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  Dominant systematic 
uncertainties: 
  hadronic energy 

calibration 
  track energy calibration 
 NC background 
  relative Near to Far 

normalization 



Resolution Binning 
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Rock and Anti-fiducial Events 
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  Neutrinos interact in rock around detector and outside of Fiducial 
Region 

  These events double sample size, events have poorer energy 
resolution 

Combined fit coming soon 
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  Contour includes effects 
of dominant systematic 
uncertainties 
  normalization 
 NC background 
  shower energy 
  track energy 

Δm2 = 2.35−0.08
+0.11 ×10−3eV2

sin2 (2θ) > 0.91 (90%C.L.)



Contours by Run Period 
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Fits to NC   
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  Fit CC/NC spectra 
simultaneously with 
a 4th (sterile) 
neutrino 

  2 choices for 4th 
mass eigenvalue 
 m4>>m3 
 m4=m1 



Electron-neutrino Background Decomposition 
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Electron-neutrino Systematics 
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Stats. Err. 



MRCC Background Rejection Check 

P. Vahle, Penn. Dec. 2010 

77 

R 

Neutrino Energy: 5.3 
GeV 

Muon Energy: 3.2 GeV 
Remnant Energy: 2.1 GeV 
ANN PID: 0.86 

 Mis-id rate: 
 pred (6.42±0.05)% 
 data (7.2±0.9)% 
  (stats error only) 

 Compatible at 0.86σ 

Remove muons, test BG 
rejection on shower 
remnants 



Checking Signal Efficiency 
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  Test beam 
measurements 
demonstrate 
electrons are well 
simulated 



Checking Signal Efficiency 
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  Check electron neutrino selection efficiency by 
removing muons, add a simulated electron 



P. Vahle, Penn. Dec. 2010 

80 

  Hadron production and cross sections conspire to 
change the shape and normalization of energy 
spectrum 

~3x fewer antineutrinos for the same exposure 

Making an antineutrino beam 



Anti-neutrino Selection 
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Anti-neutrino Systematics 
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FD Anti-neutrino Data 
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  Vertices uniformly distributed 
  Track ends clustered around coil hole 



Previous Anti-neutrino Results 
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  Results consistent with (less 
sensitive) analysis of anti-
neutrinos in the neutrino beam 

 anti-neutrinos from 
unfocused beam 
component 

 mostly high energy 
antineutrinos 

 Analysis of larger exposure 
on going 



Future Anti-neutrino Sensitivity 
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MINOS Physics Goals 
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  Measure νμ  disappearance 
as a function of energy 
   Δm2

32 and sin2(2θ23) 

  look for differences between 

neutrino and anti-neutrinos

  More MINOS analyses: 

  atmospheric neutrinos  
  cross section measurements 
  Lorentz invariance tests 
  cosmic rays 

Δm2
32 

Δm2
21 

νµ →νX



Atmospheric Neutrinos 
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Rν /ν
data / Rν /ν

MC = 1.04−0.10
+0.11 ± 0.10

Δm2 − Δm2 = 0.4−1.2
+2.5 ×10−3eV2


