Search for a New Hadronic Resonance Using Jet Ensembles at CDF

Amitabh Lath with Rouven Essig, Eva Halkiadakis, Tim Lou, Claudia Seitz, Scott Thomas Rutgers, The State University of New Jersey

Has there been a blind spot in new physics searches?

- Most new physics searches require either
 - leptons (e, μ)
 - missing momentum (ie, MET) from v, lightest neutralino, extra dimensions...
 - Photons
- What if new physics has color (q- or g-like)?
 - Not produced at e⁺e⁻ colliders
 - Could be pair produced at hadron colliders
 - Of course, **massive** QCD backgrounds
 - Important exception: Ongoing dijet bump hunt at Tevatron/LHC. Not as sensitive to multiple jet final states.

New Physics with Color

Some questions before we start

- Is this even possible?
- Test: Can you find the top quark?
 - <u>Cons</u>: Top really heavy, our analysis is geared to lighter objects, produced with some boost.

4

- **Pros:** Know top is there...
- How will you handle backgrounds?

Has to be data-driven..

Usual tricks do not work

- Picking the correct 3 jets in a multiple-jet event is difficult.
 - In a 6-jet event, there are 6-choose-3=20 different triplets.
 - Some hard jets are from initial- and final-state radiation (not part of signal)
- Techniques like min[M(a,b,c) M(d,e,f)] just don't work.
- NN etc are good only if you are very sure of your model's kinematics.
- QCD 6-jet cross-section, kinematics not known well (*except that it's huge*).

Our technique: Look at them all

- Ensemble method
- There are several jet triplets in a multijet event.
- Plot the invariant mass

 m_{jjj} vs ΣPt_{jjj}

• We look at them all (multiple entry plot).

CDF Monte Carlo: ttbar **CDF RUN II Preliminary** 3 jet invariant mass [GeV/č] 10³ along 10² Nrong triplet con PYTHIA E m=172.5 GeV/c ≥ 20 entries per event |p,| [GeV/c]

The diagonal offset cut

Notes on the technique

- We look for just one 3-jet mass resonance in a multi-jet environment.
 - No attempt to fully reconstruct both decays.
 - <u>Nothing model dependent:</u> no b-quarks, no internal resonances, no requirements on geometry (hemisphere, ∆R, etc.)
- New physics with strong couplings will have large cross sections.
 - Recall ttbar production is ~7 pb.
 - RPV gluinos are similar, ~10 pb at m_{top} , rising to ~200 pb at 90 GeV/c² (LO, higher with NLO).
 - The power of this technique is in the focus on (slightly) boosted decays. Reduces QCD and combinatoric backgrounds.

Trigger

- CDF has an interesting Quad-Jet trigger
 - Designed for top and Higgs (all hadronic) modes
 - Constructs calorimeter clusters at trigger Level 2 (raw, *energy not corrected*).

 Thresholds changed as luminosity went up (total L2 rate ~300 Hz).

 Triggers on 4 jets @L2 (15 GeV raw each) and SumEt >175 GeV raw.

- This is ideal for our search.

Basic Event Selection

- MET < 50 (get rid of beam splash)
- Vertex: between 1 and 4
- Jets: between 6 and 8
- Σ pt of top 6 jets > 250 GeV

Multiple interactions could be a large background:

 Two 3-jet (or three di-jet) events may be more likely than 6-jet events.

Jet Z Requirement

CDF Beamline is z-coordinate

- Event with multiple interactions will typically be a multiple vertex event.
- Cannot simply cut on Nvertex
- Calorimeter jets do not come with Z info.
- Need to create.
 - Loop over tracks (pt >1 Gev)
 - Associate w/ jet (cone 0.4)
- Take mean z of tracks as Jet-z.
- If RMS_z > 4cm, treat as no Z info.
- Event must have >3 jets w/ Z info
- "Good" triplet must have at lest 2 jets w/ Z info.

This lowers our acceptance for forward clusters

Summary of jet Z

- Define
$$\bar{z_j} = rac{\sum_{i=1}^{tracks} z_0}{N_{tracks}}$$

(mean position of all the tracks within a jet)

- Error on
$$z_{jet}$$
: $\delta(z_j) = \sqrt{\frac{\bar{z}_j^2 - \bar{z}_j^2}{N_{tracks}}}$.

- Define
$$z_{\rm rms}$$
 $z_{\rm rms} = \sqrt{\frac{(\sum_{\rm jets} \bar{z}_j^2)/N_{\rm jets} - \left(\sum_{\rm jets} \bar{z}_j/N_{\rm jets}\right)^2}{N_{\rm jets}}}$

$$Z_{rms} < 0.5$$

• Within a triplet,

- $\delta(z_{iet})$ for any jet in triplet <2.5

- Event level cut was < 4
- number of jets without z info <= 1
 - These tend to be high eta jets w/out tracks
 - $|z_{iet} VTX-z| < 10$ cm for all jets in triplet

Summary of jet Z

Backgrounds

- QCD and combinatoric (both have Landau shape)
- Also need to optimize diagonal offset cut
- Need parametrized background function.

 Why not just fit the data with Landau+Gaussian and let Minuit handle it?

 Minuit will chase fluctuations, we need an independent background estimate.

Background Procedure

- Get 5-jet sample and make triplets.
 - Statistically independent
- Create ratio of triplet Σpt
 - (6-jet/5-jet)
- Correct the 5-jet mass distribution by this weight.
- Fit the scaled 5-jet mass dist with Landau
 - Extract MPV, width..
- Use parameters from scaled
 5-jet fit on the 6+-jet data

Background Procedure

Comment on Background Procedure

- The 6-jet triplets have a softer Σpt distribution than the 5-jet
 - The main difference between a QCD 5-jet and QCD
 6-jet is a soft gluon emission.
- We use the pt (non-invariant) ratio to correct the mass (invariant).
 - Note that for signal, pt and mass are not correlated
- What if there is signal in the 5-jet?
 - Tough problem when doing data-driven backgrounds. But we note that Landau parameters are smooth functions of diagonal offset cut.

- σ (QCD 5-jet) is ~10x σ (QCD 6-jet).

Background Parameters

- 5jet scaled and 6jet w/ top window blind MPV, Width nearly agree
- Amplitude curves obviously different.
- When we fit for signal we FIX background params.

Optimizing the diagonal cut

- What is the best diagonal cut for a given m_{gluino}?
 - Cannot avoid signal MC
- Use signal/background as metric
 - We have a (*data-driven*) background estimate as function of diagonal cut.
 - Make pseudoexpts by adding signal MC
 - Vary diagonal cut, fit. Extract optimal diagonal cut.
- Note: fitting background & optimizing cuts in same step with data *does not work*.

Optimized diagonal cut

Pole mass	Optimal diagonal cut
110.1	145
133.5	180
167.9	185
190.3	195
223.3	205
245.0	195
top25	190

What do we expect to see?

- We need to quantify our expectation before we can claim we see anything.
- Get background shape (Landau) and signal (Gaussian)
- Use as parent distribution to throw pseudoexperiments.
- Recover #events (signal and background) and calculate σ₉₅
- Systematic uncertainties incorporated as jitter in parent Landau parameters
 - Adding systematics does not change the mean # events found, but raises the σ_{95.}

What do we expect to see?

- We need to quantify our expectation before we can claim we see anything.
- Get background shape (Landau) and signal (Gaussian)
- Use as parent distribution to throw pseudoexperiments.
- Recover #events (signal and background) and calculate σ₉₅
- Systematic uncertainties incorporated as jitter in parent Landau parameters
 - Adding systematics does not change the mean # events found, but raises the $\sigma_{95.}$

Expected Limits

- Gluino acceptance is
 (4.9 +- 1.1) e-5.
- Systematic uncertainties:
 - Jet Energy Scale: 38%
 - ISR/FSR: 20%
 - PDF: 10%
- Systematics incorporated as jitter of parent distribution Landau params in the pseudoexperiments.
 - For signal extraction we fix background params at nominal values.

Fits to Data

50

100

150

00[□]

50

100

150

200

250

3 jet invariant mass [GeV/c²]

We fit data the same way: Fix background params Float Gaussian amplitude Extract #events (sig,bckg)

CDF RUN II Preliminary 3.2 fb⁻¹

≥ 6jet Data

200

+ Gaussian fit

QCD Landau prediction

fixed at m=112 GeV/c²

250

3 jet invariant mass [GeV/c²]

(diagonal cut value 155 GeV/c)

Fits to Data

Fits to Data

The m = 175 fit

Limits

Limits

Limits

Examine top acceptance

• We looked at various top MC

- PYTHIA (various mtop)
- CTEQ and MRST PDFs
- more/less ISR and FSR
- ALPGEN → PYTHIA
- MC@NLO
- All predict 0.75 1.5 events after diagonal cut of 190 GeV.
- Excess is robust wrt sliding pt, diagonal cut around nominal.
- These are 3.2 fb-1 plots, we also looked at
 - 6 fb-1 of data
 - JET100 trigger (not good for gluino, but fine for top)
 - Semileptonic top (in lepton+4jet events)
- Bottom line: excess is real, there is a discrepancy with MC

Toy top study

- Generator-level study
- PYTHIA \rightarrow FastJet
 - Perfect detector output.
- After just eta, pt, diagonal cuts:
 - Expect 5.5 events.
- Note that jet_z, detector ineff. not taken into account at all.
- MC simply not producing enough top with high pt.

Conclusion

- Developed a new technique (ensemble method) to extract correlated objects in a multi-object background
 - Working closely with theorists pays off big!
 - Rouven Essig (theory GS) thesis on ensemble technique
 - Used it to look at 3jet in multi-jet events
 - Technique will work with other objects.
 - Add leptons, photons, MET?
- Found an excess at top mass. Significance $\sim 2\sigma$
 - Stat. Fluctuation? Boosted tops? PDFs? New physics?
 - Studying this with more data now.
 - Same group doing this analysis on CMS.

Backup

150

100

127 132.1

43.93

18.33/23

 15 ± 6.8

94

132.2

21.35/23

15 ± 8.0

73

132.8

45.94

47

132.4

45.02

10.49 / 23

200

150

50

100

17.44 / 23

 $\textbf{97.7} \pm \textbf{5.4}$

43.6

٥Ę diag_cut_180_20_zrms_0.5 18

30

25

20 F

15 F

10**上** 5 Ē

25

20

15

10

۶Ē

0

14 12 10 8 10 4 2

