W Physics at ATLAS

Corrinne Mills

(Harvard University)

University of Pennsylvania HEP Seminar

25 January 2011

A Familiar Particle in a New Setting

- $W \rightarrow Iv$ at CERN in 2010
 - → First source of high momentum leptons
 - → Standard Model in new energy regime

• $W \rightarrow Iv$ at CERN in 1982

→ Observation (with Z) establishes the Standard Model

From the Familiar to the Unknown

- Search for physics beyond what we know must be based on a solid understanding of the detector and the Standard Model
- W signature
 - → Charged leptons
 - → Missing energy (from weakly-interacting neutrals)
 - \rightarrow Modeling of pp collisions
- Leptons flag electroweak interactions in a sea of strong interactions (jets)
 - → Generically, something new could participate in either interaction, or both
 - → But leptonic signatures are easier to distinguish from background
- Weakly-interacting neutrals pretty interesting, too

Overview

- The LHC and the ATLAS detector
- W candidate sample
 - \rightarrow Lepton definitions
 - → Backgrounds
- Measurements
 - → Inclusive cross section
 - → Charge asymmetry
 - \rightarrow Differential $(d\sigma/dP_T)$

The LHC at CERN

LHC @ 7 TeV

- Rapid LHC startup
- 2010 Instantaneous luminosity ۲ $record = 2.1 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$
 - \rightarrow Tevatron record ~ 4x10³² cm⁻²s⁻¹

- $2 \rightarrow 368$ bunches
 - \rightarrow 2808 possible
- ~10¹¹ p/bunch

Tevatron: 2 MJ

The ATLAS Detector

Hadron Collider Kinematics

Electrons in ATLAS

- EM calorimeter cluster, possibly matched to inner detector (ID) track
- $E_T > 20 \text{ GeV}, |\eta| < 2.47$
 - → exclude gap between barrel and endcap $1.37 < |\eta| < 1.52$
- "Loose" selection
 - → shower shape in middle layer of calorimeter
- "Medium" selection
 - \rightarrow add fine-granularity shower shape and track match
- "Tight" selection
 - \rightarrow add E/p, more track quality, high-threshold TRT hits, conversion veto
- Trigger: Level 1 (hardware) requires coarse-granularity cluster with $|\eta|<2.5$ and $E_T>10~GeV$

Muons in ATLAS

- Combined muon: matched inner detector (ID) and muon spectrometer (MS) track
- Selection:

c. mills (Harvard U.)

Level 1 Muon Trigger

- Collisions (ultimately) at almost 40 MHz, write to disk at 200 Hz
- Three-stage trigger: Level 1, Level 2, and "Event Filter"
- Level 1 implemented through on-detector electronics

Muon Trigger Performance

- L1 trigger (6 GeV threshold) for first papers HLT not commissioned
- Measure trigger efficiency for reconstructed muons in orthogonal (calo) trigger

- Inefficiency in barrel = gaps in geometry
- Endcap: some TGC inefficiencies not modeled, uncalibrated trigger roads

W Cross Section Measurement

Event Selection

electron		muon		
L1 trigger: E _T > 10 GeV		L1 trigger: p _T > 6 GeV		
Ε _T	> 20 GeV	p _T	> 20 GeV	
η < 1.37 or	1.52 < η < 2.47	η	< 2.4	
pass "tight" criteria		isolated from oth	er charged particles	
E _T ^{miss} > 25 GeV				
transverse mass M _τ > 40 GeV				

The High-p_T Electron Data

Electrons with $E_T > 20$ GeV in events firing L1 electron trigger:

The High-p_T Muon Data

• Muons with $p_T > 15$ GeV in events firing L1 trigger

Selecting the W signal (II)

Missing Transverse Energy

$$\vec{E}_T^{miss} = -\sum_{\text{clusters}\,i} E_i \hat{n}_i - \vec{p}_T^{\mu} + E_{loss}^{\mu} \hat{p}_T^{\mu}$$

• Reduce backgrounds by requiring $E_T^{miss} > 25 \text{ GeV}$

Selecting the W signal (III)

- Transverse mass $M_T = \sqrt{2(p_T^{\mu})(E_T^{\text{miss}})(1 \cos(\varphi^{\mu} \varphi^{E_T^{\text{miss}}}))}$
- Clean up sample with $M_T > 40 \text{ GeV}$

Backgrounds to $W \rightarrow ev$

- **"Electroweak" backgrounds** ($Z \rightarrow ee, W$ $\rightarrow \tau v, Z \rightarrow \tau \tau$, ttbar): **33.5 ± 3.0** (stat+sys) events
- $N_{QCD} = 28 \pm 3$ (stat) ± 10 (sys) events
- **QCD: Template fit to E_T^{miss}** distribution (after all other requirements)
 - → $W \rightarrow ev$ and $W \rightarrow \tau v$ templates from simulation
 - \rightarrow QCD template from data
 - Some electron ID cuts reversed, veto events with isolated electrons
 - → Systematic
 - Vary requirements for QCD template
 - Restrict fit range

Backgrounds to $W \rightarrow \mu v$

- "Electroweak" backgrounds ($Z \rightarrow \mu\mu$, $W \rightarrow \tau\nu$, $Z \rightarrow \tau\tau$, ttbar) 77.6 ± 5.4 (stat+sys) events
- **Cosmics: 1.7 ± 0.8** event
- **QCD: 21.1 ± 9.8** (stat+sys) events
 - $\rightarrow N_{\text{all}}$ candidates before isolation req.
 - N_{isol} pass
 - N_{QCD} are from QCD, N_{non-QCD} are not
 - → Apply isolation requirement, with different efficiencies from each sample
 - Measure $\boldsymbol{\epsilon}_{non-QCD}$ (i.e. signal efficiency) from Zs
 - Measure $\boldsymbol{\epsilon}_{QCD}$ in QCD-dominated data (15 < p_T^{μ} < 20 GeV), and extrapolate to p_T^{μ} > 20 GeV using simulated dijet events
 - \rightarrow Solve, and $\epsilon_{\rm QCD} N_{\rm QCD}$ is the pred. background
 - → Systematic from extrapolation of $\epsilon_{QCD'}$ significant statistical uncertainty, too

$$N_{\text{all}} = N_{\text{non-QCD}} + N_{\text{QCD}}$$
$$N_{\text{isol}} = \varepsilon_{\text{non-QCD}} N_{\text{non-QCD}} + \varepsilon_{\text{QCD}} N_{\text{QCD}}$$

$W \rightarrow \ell v Acceptance$

channel	A _w	C _w	acceptance x efficiency
electrons	0.462 ± 0.014	0.659 ± 0.046	0.304 ± 0.023
muons	0.480 ± 0.014	0.758 ± 0.030	0.364 ± 0.018

- Factorize acceptance times efficiency
 - \rightarrow A_W = geometric & kinematic acceptance (measured at truth level)
 - From Pythia 6.4 (LO)
 - \rightarrow C_W = detection efficiency
 - GEANT 4 simulation of ATLAS, corrected to data
- Common systematic uncertainty on A_W is 3%
 - → Dominated by PDF dependence
 - → Includes LO-NLO differences
- Systematic uncertainties on $C_W = 7\%$ for electrons and 4% for muons
 - → Reconstruction and trigger (μ) efficiencies
 - → Energy / momentum scale/resolution

W Cross Section Results

channel (lumi)	N _{cand}	N _{background}	cross section (nb)
electron (315 nb ⁻¹)	1069	61.5 ± 10.8	10.5 ± 0.3 (stat) ± 0.8 (sys) ± 1.1 (lum)
muon (310 nb ⁻¹)	1181	100.4 ± 11.2	9.6 ± 0.3 (stat) ± 0.5 (sys) ± 1.1 (lum)
combined	2250	-	10.0 ± 0.2 (stat) ± 0.5 (sys) ± 1.1 (lum)

- Cross section times branching ratio $BR(W \rightarrow \ell v)$
- Theoretical prediction:
 - → 10.46 ± 0.02 nb
 - → FEWZ w/ MSTW2008 pdfs
- Luminosity uncertainty is 11%

$$\sigma = \frac{N_{\text{cand}} - N_{\text{background}}}{A_{W} \times C_{W} \times \int \mathcal{L} \, dt}$$

W Cross Section in Context

W+-W- Charge Asymmetry

- W⁺ favored in proton-proton collisions in eta-dependent way
 - → twice as much u as d in the proton, harder u-quark PDF

from F. Fayette et al., Eur. Phys. J. C63 (2009) 33, by way of M. Boonekamp

Charge Asymmetry Inputs

Charge Asymmetry Results

integral combined result	0.20 ± 0.02 (stat) ± 0.01 (sys)	
MC@NLO with CTEQ6.6	0.218 ^{+0.008} -0.009	
MC@NLO with HERAPDF 1.0	0.202 ± 0.019	
DYNNLO with MSTW 08	0.184 ^{+0.011} -0.012	

Wp_T Response Matrix

- Calorimeter resolution \rightarrow measured and reconstructed W p_T may be quite different
 - → Related by a **Response Matrix R**

 \rightarrow Correct for slight differences in W and Z kinematics (sum E_T)

٠

Wp_T Unfolding

- Response Matrix R relates measured and reconstructed W $\ensuremath{p_{T}}$

• Can "unfold": invert matrix, map back to truth

• Measurement to be completed in coming weeks

Summary of W Measurements

- Benchmark high-p_T electroweak processes at the LHC by characterizing W production at ATLAS
 - \rightarrow Inclusive cross section
 - → Lepton charge asymmetry
 - $\rightarrow d\sigma/dp_T$
- Feeds back into physics
 - → Standard Model
 - PDFs
 - QCD modeling (perturbative and non-perturbative)
 - → Detector response
 - Hadronic recoil and E_T^{miss}
 - High-p_T electrons and muons

WZ candidate event

• Rarer processes ($\sigma_{WZ} = 18 \text{ pb}$) are beginning to appear

What's next

- Build on knowledge from W sample
 - → Better modeling of signals and backgrounds
 - \rightarrow Understanding of muons, electrons, E_T^{miss}
 - \rightarrow Go after multilepton signals
 - Start from WZ (for example), test for supersymmetry or anomalies in the triple gauge boson coupling
 - → Longer term: search for very massive particles
 - Still anchor event selection on leptons for trigger, background rejection
 - New event topologies?
- Representatives from experiments and accelerator are meeting now at Chamonix
 - $\rightarrow \sqrt{s} = 7 \text{ or } 8 \text{ TeV}?$
 - \rightarrow run through 2012 or stop at the end of 2011 to go for 14 TeV?

More on Electrons

- Trigger: sliding-window algorithm using reduced-granularity clusters $\Delta\eta \; x \; \Delta\phi = 0.1 \; x \; 0.1$
- Offline reconstruction: sliding window of 3x5 cells or 0.075×0.125 in $\eta x \phi$
 - → Electron = cluster with $E_T > 2.5$ GeV and matched track with $p_T > 0.5$ GeV
- Reconstruction: exact requirements vary with E_T and $|\eta|$, but three categories:
- Loose electrons
 - → Fiducial: $|\eta| < 2.37$ and exclude $1.37 < |\eta| < 1.52$
 - \rightarrow Shower shape in middle (largest) layer of calorimeter: cluster width in η
 - \rightarrow Hadronic leakage: E_T (innermost later of HCAL) / cluster E_T
- Medium electrons: loose +=
 - \rightarrow Shower shape in innermost (finely segmented in η) layer of calorimeter
 - → Track match ($\Delta \eta$)
 - → Track quality (pixel, SCT hits and impact parameter)
- Tight electrons: medium +=
 - → High-threshold hits in transition-radiation tracker (TRT); hit in innermost pixel layer
 - → E/p
- http://cdsweb.cern.ch/record/1273197/files/ATLAS-CONF-2010-005.pdf

Muon L1 Trigger

Muon High Level Trigger

- On L1 accept, location of muon (Region of Interest or RoI, about $\Delta \eta \propto \Delta \phi$ = 0.1 x 0.1 in barrel, smaller in endcap) sent to Level 2
- Level 2: full-granularity reconstruction of muon within Rol
 - → Spectrometer segment finding by LUT
 - \rightarrow ID track match included
- Event Filter (Level 3): identical to offline reconstruction
- Improving momentum resolution \rightarrow better background rejection
- Work ongoing
 - → Alignment, algorithm optimisation

Muon Reconstruction Efficiency

LHC design parameters

Quantity	number
Circumference	26 659 m
Dipole operating temperature	1.9 K (-271.3°C)
Number of magnets	9593
Number of main dipoles	1232
Number of main quadrupoles	392
Number of RF cavities	8 per beam
Nominal energy, protons	7 TeV
Nominal energy, ions	2.76 TeV/u (*)
Peak magnetic dipole field	8.33 T
Min. distance between bunches	~7 m
Design luminosity	10 ³⁴ cm ⁻² s ⁻¹
No. of bunches per proton beam	2808
No. of protons per bunch (at start)	1.1 x 10 ¹¹
Number of turns per second	11 245
Number of collisions per second	600 million

(*) Energy per nucleon

From http://cdsmedia.cern.ch/img/CERN-Brochure-2009-003-Eng.pdf