
Penn Seminar January 2011 1

LSST
Large Synoptic Survey Telescope
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Synoptic?

• syn·op·tic (s-nptk) also syn·op·ti·cal (-t-

kl)adj.

• 1. Of or constituting a synopsis; presenting 

a summary of the principal parts or a 

general view of the whole.
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Preface

Introduction

LSST System Design 

System Performance

Education and Public Outreach

The Solar System

Stellar Populations

Milky Way & Local Volume Structure

The Transient & Variable Universe

Galaxies

Active Galactic Nuclei

Supernovae

Strong Lenses

Large-Scale Structure

Weak Lensing

Cosmological Physics

D
a
rk

 E
n
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www.lsst.org/lsst/scibook

http://www.lsst.org/files/docs/sciencebook/SB_Preface.pdf
http://www.lsst.org/files/docs/sciencebook/SB_1.pdf
http://www.lsst.org/files/docs/sciencebook/SB_2.pdf
http://www.lsst.org/files/docs/sciencebook/SB_3.pdf
http://www.lsst.org/files/docs/sciencebook/SB_4.pdf
http://www.lsst.org/files/docs/sciencebook/SB_5.pdf
http://www.lsst.org/files/docs/sciencebook/SB_6.pdf
http://www.lsst.org/files/docs/sciencebook/SB_7.pdf
http://www.lsst.org/files/docs/sciencebook/SB_8.pdf
http://www.lsst.org/files/docs/sciencebook/SB_9.pdf
http://www.lsst.org/files/docs/sciencebook/SB_10.pdf
http://www.lsst.org/files/docs/sciencebook/SB_11.pdf
http://www.lsst.org/files/docs/sciencebook/SB_12.pdf
http://www.lsst.org/files/docs/sciencebook/SB_13.pdf
http://www.lsst.org/files/docs/sciencebook/SB_13.pdf
http://www.lsst.org/files/docs/sciencebook/SB_13.pdf
http://www.lsst.org/files/docs/sciencebook/SB_14.pdf
http://www.lsst.org/files/docs/sciencebook/SB_15.pdf
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“The committee recommends that LSST be submitted immediately for NSF's 

Major Research Equipment and Facilities Construction (MREFC) 

consideration with a view to achieving first light before the end of the decade. 

The top rank accorded to LSST is a result of (1) its compelling science case 

and capacity to address so many of the science goals of this survey and (2) 

its readiness for submission to the MREFC process as informed by its 

technical maturity, the survey's assessment of risk, and appraised 

construction and operations costs. Having made considerable progress in 

terms of its readiness since the 2001 survey, the committee judged that 

LSST was the most ready-to-go.“

August 13, 2010

Decadal Survey
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The LSST Project – ~ x $108

• Telescope & Site

– Telescope Mount

– Mirrors (M1, M2, M3)

– Observatory + base facility +….

• Data Management

– Data movement, storage, analysis

• Camera

– Lenses, filters, sensors, electronics, etc.

NSF

DOE
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The LSST Telescope

Secondary mirror 

(behind conical 

light baffle)

Primary and 

tertiary mirrors

Camera mounted through 

secondary mirror

Platforms for 

accessing camera

Relevant Telescope Features

3 mirror optical design

Moving structure:  300 tons

Altitude/azimuth rotation axes

Max azimuth axis accel:  10.5 deg/sec2

Max elevation axis accel:  5.25 deg/sec2

Camera is cantilevered off the Top End Assembly near 

the center of rotation

Camera normally looks down when telescope is pointing 

near zenith

Top End Assembly 

support structure
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Telescope Optics

• f/1.23

• < 0.20 arcsec FWHM images in six bands: 

0.3 - 1 m

• 3.5 FOV

• Etendue = 319 m2deg2
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Primary/Tertiary Mirror (in fabrication)
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Large machinery, large piece of glass, nm precision
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The Telescope and Site includes the summit and base 

facilities, telescope system, & calibration hardware

Base Facility in La Serena

1,380 m2 service and 

maintenance facility

30 m diameter dome
Control room and heat 

producing equipment

1.2 m diameter 

atmospheric 

telescope

Wind and light baffle

300 ton telescope

Service and 

maintenance cranes
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La Serena

Base Facility

AURA property

0 10 20 km LSST Site

CTIO

N

La Serena

Coquimbo

Gemini &

SOAR

Embalse 

Puclaro

airport

Vicuña

puerto

The site has been chosen on Cerro Pachón, Chile
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Summit facility final design under contract with 

ARCADIS Geotecnica, Santiago Chile

50

m

100m 150

m
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Telescope Dome – an interesting set of 

challenges

~14Deg Stray

Light Band

3.5Deg

FOV



Penn Seminar January 2011 15

M57
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Telescope Mount

Deployable 

Platform x2

Tuned Mass 

Dampers x4
Balancing 

System x 4

Elevation Cable 

Drape x2

Mirror 

Cover

Azimuth 

Drives       

4 or 8

Elevation 

Drives x4

Hydrostatic Azimuth Bearings

Hydrostatic Elevation Bearing

Location of Azimuth 

Maypole Cable Drape

Deployable 

Platform x2

Tuned Mass 

Dampers x4
Balancing 

System x 4

Elevation Cable 

Drape x2

Mirror 

Cover

Azimuth 

Drives       

4 or 8

Elevation 

Drives x4

Hydrostatic Azimuth Bearings

Hydrostatic Elevation Bearing

Location of Azimuth 

Maypole Cable Drape

Moving structure:  300 tons

Drive power:  450 hp 

Damping:  Tuned masses raise damping to 5%

First Frequency: 8.2 hz (loaded structure on 

bearings, pier, and summit rock)



Penn Seminar January 2011 17

M1M3 System  

Cell deck plate with 

pneumatic support actuators

Cell deck plate support 

girders (blue)

M1M3 mirror within

Light baffle ring

Mirror location 

Hardpoint 

Structure (red)

Vacuum support 

trusses (green)

Metrology laser tracker

access stand and support tube (gray)
Cell shell and floor plate

Stiffened against vacuum load

Cutaway View
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Mirror supports and actuators
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M2 Substrate purchased and completed by 

Corning using LSST non-federal funding

• M2 Blank Complete & Delivered in November 2009

– All Requirements Satisfied 2 Months Early

– Acid Etched Rear/Side Surfaces Ready for Pad Bonding

– CX Surface Contour Grind ~40μm from Final Mirror Figure

Fusion Seal Firing Complete Sag Mandrel Loading Sag to Meniscus Shape Sagged Surface Generating

Acid Etch Complete

CX Contour

Grind Complete

Final Acceptance Complete Delivery to Storage
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Hickson92
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Data Management

• Data from Camera –

– 3 GigaPixels, 2 Bytes/Pixel = 6GB – every 18 s (no “Trigger”!!!)

– 1200 GB / hour  12 TB / observing night (ATLAS ~ 16TB/day)

• However, LSST must do fast alerts to Astronomical Community! 

Image stream from camera generates real-time transient alerts

– Difference image based

– 60s latency, requires ~37 TFLOPS

• Process entire survey data annually to produce a Data Release

– Self consistent set of data products, all w/same algorithms

– Full survey depth to SRD requirements

– 68 PB images in survey year 10, requires ~ 300 TFLOPS

• Produce calibration data products needed by above

• Support challenging SRD photometry requirements
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Data Management II

• Make data available to scientists, with enough processing cycles 

and support to make it useful

– ~57 TFLOPS, 13 PB storage dedicated for users

Processed 

from single 

full Imsim 

focalplane, 

binned 4x4, 

with the 

markings 

for the 

individual 

amplifiers, 

ccds.
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Data Management World View
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M15
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The Camera……

Parameter Value

Diameter 1.65 m

Length 3.7 m

Weight 3000 kg

F.P. Diam 634 mm

1.65 m

5’-5”

– 3.2 Gigapixels

– 0.2 arcsec pixels

– 9.6 square degree FOV

– 2 second readout

– 6 filters
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Unique technical challenges drive camera design

• Very large field of view (9.6 square 
degree FOV) implies a physically 
large focal plane (64-cm diameter) 
with small (10 m) pixels

• Fast f/1.2 beam leads to short depth-
of-focus

• Broad spectral coverage                
(350 – 1040nm)

• Fast readout to maintain high 
efficiency given the short exposures 
(3.2 Gigapixels in 2 seconds)

• Large number of signal lines and 
large cryostat & low noise

• Camera located in the telescope 
beam

Mosaic of a large number (189) of 
sensors with narrow interchip gaps 
(250 m)

Tight alignment and flatness 
tolerances (15 m p-to-v) on the 
sensor array

Deep, fully depleted CCDs, but with 
minimal charge spreading; 6 filters

Parallelized design and sensors 
which are highly segmented (16 
readout ports)

Electronics must be implemented in 
the cryostat

Tight constraints on envelope, mass, 
& heat dissipation
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Integrated complex sub-systems tightly packaged 

within the telescope’s optical constraints

L1 lens

L2 lens

L3 lens

Shutter

Refrigeration 

system

Cryostat

Filter
(in stored position)

Filter
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Walk-through 1:  Overall view

L1-L2 Lens assembly

Camera housing 

and back flange
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Walkthrough 2:  Camera partial assembly showing 

Auto Changer

Filter Auto Changer

Filter
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Walkthrough 3:  Camera partial assembly showing 

Shutter

Shutter
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Walkthrough 4:  Camera partial assembly showing 

Carousel, Cryostat, and detector plane past L3 lens

Filter Carousel

L3 lens

Detector plane
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Walkthrough 5:  Cryostat section showing 

detectors, structure and thermal control elements 

Grid assembly

Cesic ®
L3 lens assembly

Corner Raft Tower

2 guide sensors

1 wavefront sensor

Front end electronics

Science Raft Tower

3 x 3 array of science 

sensors

Front end electronics
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FOCAL PLANE WITH 21 SCIENCE 

RAFTS + 4 CORNER RAFTS

The Sensors subsystem consists of the 21 “science 

rafts” that make up the 3.2Gpix focal plane

TOWER
CCDs + front end electronics

180K operation

An autonomous, fully-testable 

and serviceable 144 Mpixel 

camera

thermal straps

FEE boards

housing 

(cold mass)

cooling 

planes

RAFT
9 CCDs

coplanarity 6.5 m

4K x 4K CCD
10 m pixels, .2 arc sec

extended red response

16 outputs

5 m flatness

Back-side illuminated
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M1
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CCDs

• Charge Coupled 

Devices –

– Willard Boyle, George 

Smith (invented 1969, 

Nobel 2009)

• Areal array –

– “parallel shifts” – data 

to output register (2k)

– “serial shifts” – data to 

electronics (512)
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CCD Challenges

Large field of view implies 

physically large focal 

plane (64cm )

Modular mosaic focal 

plane construction

21 rafts × 9 4K  CCDs/raft

189 CCDs total

3.1Gpix

Fast f/1.2 beam, shallow 

depth of focus

Tight alignment and 

flatness tolerance

Flatness: 5 m

Alignment (z axis): 10 m

Plate scale 20”/mm Small pixels, close butting Pixel: 10 m

Chip-chip gap: 250 m

Fast readout (2s) with low 

noise (5 e-)

Highly parallel readout 

electronics

16 amplifiers/4K CCD

Broadband, high spectral 

sensitivity

Thick silicon sensor, back 

illuminated, AR coat

100 m thickness for IR 

sensitivity

Thin conductive window

Seeing-limited image 

quality

Internal electric field to 

minimize diffusion

High resistivity, biased 

silicon (> 3 k -cm, -50V)
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LSST’s high throughput goals

• The largest focal plane
– LSST: 3.2Gpix (189 CCDs)

– PanSTARRS GPC1: 1.4Gpix (60 CCDs)

– HyperSuprimeCam: 940Mpix (112 CCDs)

– DECam: 500Mpix (60 CCDs)

– CFHT MegaCam: 340Mpix (36 CCDs)

• The fastest focal ratio
– LSST: f/1.23

– SuprimeCam: f/1.87

– DECam: f/2.7

– PanSTARRS: f/4

– CFHT MegaCam: f/4.2

• The fastest readout time
– LSST: 2s

– PanSTARRS GPC1: 6s

– DECam: 17s

– CFHT MegaCam: 40s

– Suprime-Cam: 18s DECam

HSC

MegaCam

GPC1

LSST
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The 4K x 4K LSST sensor reference design

Sixteen 1-Mpix 

segments

10 m pixels

bonding pads

guard ring

100 m thick,

5k -cm Si

transparent, 

conductive 

entrance window 

on back side
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LSST CCD Layout
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New technology needed for LSST sensors

Thick, high- bulk Si 100 m, > 3k -cm

Highly transmissive, biased 

window

<<10nm, -50V

Flat Si surface 5 m peak-valley

Package dimensional control || optic axis: 1.5 m

┴ optic axis: 5 m

Chip-chip gap 250 m

Thermally stable

Parallel, multiport readout 16 amplifiers

Low-noise outputs < 6e- at 500kHz

Reproducible and high yield No individual device tuning

semiconductor mechanics amplifiers production
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Chip-chip gap 0.25mm (5”)

Image-image gap 

1.29mm (26”)

[column direction]

image

area

image

area

image

area

image

area

Image-image gap 

2.21mm (44”)

[row direction]

C
h
ip

 s
iz

e
 4

2
m

m
 (

1
4

’)

Edge effects

First one-two pixels from edge 

will have larger effective area 

due to field distortion
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Phase 1 device tests -- laboratory

Quantum efficiency

Charge diffusion (xray PSF)

spec.

e2v STA/ITL
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Phase 1 sensor flatness

e2v

ITL

measurements by P. Takacs, BNL

spec
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sky flat (I filter) 350nm lab flat

Ion-implant laser anneal 

raster pattern

Mask stitching boundaries Radial resistivity 

variation

Uninvited guests

Peaks around 0.07 pixel-1

spatial frequencies are 
associated with ``tree rings''

I. Kotov
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A CCD Electrically…..

SCC

ASPIC

+ 29V

~2mA
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NGC891
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Highly integrated, in-cryostat electronics

• Total of 3.024Gpix in focal plane

• Goal is 2s readout with 6e- noise

• CCD readout rate must be below ~600kHz to achieve noise figure

 CCDs must be segmented into 1-Mpix segments with individual readout 
amplifiers

• Choose 4Kx4K CCD format with 16 2048 x 512 pixel segments

– Total wire count to CCDs ~15,000

• Impractical to take this many wires through vacuum barrier

Implement compact (ASIC-based) electronics chain in cryostat

ASPIC (video processing) SCC (clock/bias generation)

thermal straps

FEE boards

housing 

(cold mass)

cooling 

planes

thermal straps

FEE boards

housing 

(cold mass)

cooling 

planes

TOWER (144Mpix FPA module)
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Raft-Centric Electronics System

Sensors + Analog

Processing + Clock

and Bias drive

-100C

Digitization, digital 

muxing, power regulation,

clock generation, etc.

-40C
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ASPIC Specifications – IN2P3*
(Analog Signal Processing Integrated Circuit)

• Operates at a temperature of 173K

• Noise :
– en  < 5nV/sqrt(Hz) maximum noise density

– enc  < 7μVrms maximum input noise @ 500ns integration time (~2e¯)

– Note : Either or both of the above may be met. If, for example, at very long integration time, en will rise but 

enc will fall, and still be an advantage.

• Operation @ 250kHz to 500kHz

• 0.05% maximum crosstalk between channels @ 500kHz

• 100k e¯ full well capacity (350 to 400 mV maximum input)

• 0.5% linearity (defined over 0 to 100k e¯)

• Differential output

• Output load 50pF // 1k

• Power supply 5V / Gnd - reference Vref = 2.5V

• Power dissipation  25mW / channel

• The ASPIC is designed in 0.35μm 5V CMOS technology from AMS.

* With some help from Mitch and John Oliver
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ASPIC – Correlated Double Sampler /

Dual Slope Integrator
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SCC  - ORNL
(Sensor Control Chip)

Load Frequency Rise Time Fall Time

Switch 1_2 340 pF 1 MHz 35.5 ns 32.5 ns

Load Freq Rise Time Fall Time

Switch 1_4 95 nF 1.6 kHz 7.3 us 7.5 us
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Front End Board - Penn
T
o
 C

C
D

s T
o
 B

E
B

s

3 ASPICs

(24 Channels)

6 SCCs
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SPI bus

CCD Timing

Power and Bias

SPI CS Address

CCD Data Bus

BEE

CPLD

CCD Clock Select
(Based on Geo addr)

ADC
Interface

SPI 
DMUX

ADC Data
Buffer

Put
Forgotten stuff

here

CCD ADC
x24

Local Registers

Temp
Sensor

Heater

Geographical Addr

Bias 
Voltage

CCD Timing

CCD analog signals (24)

ASPIC / SCC
SPI Configuration

Temp Sensor

Heater

Power and Bias

Back End Board - Harvard
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Raft Control Module - Harvard

SPI bus

CCD Timing

Power and Bias

SPI CS Address

CCD Data Bus

RCM

FPGA

CCD Clock Gen
(Processor)

Configuration 
Memory

MGT
Interface

CCD Data
SDRAM

Slow Control
Temp Calc

Housekeeping
(Processor)

USB
Interface

TCM
Interface

Processor
Memory

Configuration 
CPLD

TCM Bus

SDS INTERFACE
Optical MGT ADC Data

Interface

Put
Power stuff

here

SDS INTERFACE
Optical MGT

Put
Forgotten stuff

here
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“Vertical Slice Tests” – Penn – ASPIC2
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ASPC-1

Input (mV) vs. DSI_Out (mV)

y = 4.5565x + 23.493

R2 = 0.9999

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300

DSI_Out Gain:

75 µV per 

count

Gain (Input vs. 

Output):

4.6 mV out 

per mV in
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“Vertical Slice Test” - Harvard

microV (referred to input)
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Other LSST Electronics

• Power Supplies

• Electro-Optical Converters (DAQ)

• Clock generation and distribution

• Controls for:

– Shutter

– Filters

– Pumps

– Cooling
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Location, Location, Location
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How to annoy traditionalists….
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Things not mentioned….

• Thermal design

• Grounding & Shielding

• Optical design / filter characteristics

• Camera and Observatory Control Systems

• Data Acquisition System 

• Data bases – meta-data for everything

• Image processing (data cleaning and frame co-adding)

• Vacuum design

• Cleanliness, contamination control

• Focal Plane alignment (ppm!)

• Metrology

• Mechanical design

• Calibration

• Observing simulator / planner
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First Light – 2018???



Penn Seminar January 2011 64



Penn Seminar January 2011 65

Synoptic!
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Backup……
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LSST Boxes
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Camera Boxology
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Calyspo has an LSST test camera installed 

with phase 1 prototype sensor

• LSST’s 1.2 meter diameter Telescope on Kitt Peak

• Observing Operations conducted regularly

• LSST U, Y3, and Y4 as well as Sloan filter set on telescope

ITL/STA 1920A at Calypso

M1 (R band, 4Kx4K)
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Data Management III


